Visualization of Dijkstra’s algorithm

Algorithmics Lab, winter term 2007

Uwe Schmidt
April 27, 2008

1 Task

We were given the task to develop a program which interactively visualizes Dijk-
stra’s algorithm for beginners. We were not supposed to focus on rigorous teach-
ing of the algorithm. First of all, the program should be appealing to people
without prior knowledge of computer science. It should keep their attention and
convey the message that computers actually make our daily live easier (at least in
some regards) by putting Dijkstra’s algorithm into context.

Some of the technical requirements were to provide a graph editor with addi-
tional random graph generation and the possibility to save and load graphs. The
user should have the possibility to step through the algorithm (forward and back-
ward). Each step the progress made by the algorithm should be reflected by col-
oring the graph and presenting detail information (on demand).

2 Rationale behind my solution

The program starts up and shows an introduction window that shows an entry
to the topic for the novice user. The text tries to have an informal dialog with
the reader. The intention is to motivate to continue reading while keeping the
complexity low, taking away the fear of computers the user might have. It is of
course not mandatory to read the whole introduction, as it can be brought up at
any later time form the menu or toolbar.

The main window is fully visible after the introduction has been closed. It
initially shows two main areas (panels): One for the graph and another for all
things related to the algorithm. The program is basically always in one of two
modes (graph edit or algorithm).

The algorithm panel is always grayed out when the program is in graph edit
mode. Hiding the panel avoids distracting the user with things not relevant to

1



making a graph. The legend of node and edge colors could for instance cause
confusion since they have nothing to do with the colors when editing the graph.
The user can switch to algorithm mode when done with the graph, revealing the
algorithm panel with all UI widgets related to the algorithm.

2.1 Editing the graph

The user can load or randomly generate a graph, or start from scratch. The graph
panel shows two contextual semi-transparent information boxes at the bottom.
Their content changes when the mouse is moved over nodes and edges and tells
the user which operations can be performed with the left and right mouse buttons.

The whole process of graph editing is also not modal like in many similar
applications. That means the user cannot switch between modes like “editing”,
“picking”, or “translating” (these are actually the modes that are used by the
graph library by default). Modeless editing might slow down the ex-
perienced user but it also protects the novice user from making mistakes due to
mode confusion. The latter case is clearly more relevant for this program, thus my
decision to avoid modes.

2.2 Running the algorithm

The user can switch to “algorithm mode” when the graph is ready. This causes the
graph panel to become locked against changes that alter the position or distance
between nodes. Only the distance-invariant graph operations (rotation, panning
and zooming) are allowed in this mode.

The algorithm panels contains a legend explaining the colors used to visualize
the state of nodes and edges during the course of the algorithm.

Below the legend, a textbox provides information about the current step’s ac-
tivity, trying to explain what’s going on in plain language, omitting pseudo-code
or algorithmic slang (like the word “relaxed”). The idea for the specific text is
borrowed from Carla Laffra’s appletﬂ

A progress bar visually and textually conveys the algorithm’s progress. The
total number of steps is pre-calculated by counting the number of reachable nodes
from the start.

Detail information for nodes and edges are shown when mouse is moved over
them in the graph panel. Node’s path length and the path’s current state (e.g. “just
found” or “improved”) is shown among other information. The current path from
the start to the highlighted node is also displayed if one has already been found.

'http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/
DijkstraApplet.html


http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html

This is done in a “text-marker style”, not violating the legend by preserving edge
colors and shapes along the path.

Changes between algorithm steps can either be displayed all at once or by
animation. Animation makes it much easier to follow the algorithm, especially in
the beginning and in smaller graphs. The user can of course turn this feature off,
which can be useful in bigger graphs and for performance reasons.

2.3 Help

The program includes help that can be displayed on the left side of the main win-
dow. The help is meant to be read on demand. It is hopefully not necessary for
most users to read it in order to get started. Additional information on Dijkstra’s
algorithm are also provided for the interested user.

2.4 Language

The whole program, including help and introduction, is available in English and
German. The language can be changed at any time without the need to restart the
program. It would also be easy to add other languages through new property files
and having a list of languages to choose from instead of a toggle button.

2.5 System requirements

I decided to use Java 5 for compatibility reasons. For instance, Mac OS X cur-
rently only offers Java 6 as a developer preview. I also used Swing since it is truly
platform-independent without the need to provide a separate version for each plat-
form.

2.6 Appearance

I wanted to have the same program appearance on all platforms to assure the equal
program experience. I decided not to use Java’s default “Metal Look & Feel”
because it isn’t very good in my opinion. I thus used the third-party
but also added the possibility to change the look & feel to any other
installed on the user’s computer. This could lead to unexpected behavior of some
UI widgets though.



3 Software Design

I decided to assign an attribute to each node and edge. This attribute is changed
while the algorithm progresses and used by the GUI to render nodes and edges
accordingly. The algorithm assigns one of following attributes to nodes and edges
at each step.

Nodes: START NODE, VISITED, NOT_VISITED, SETTLED, CURRENTLY SETTLED,
VISITED NEXT SETTLED, PATH FOUND, PATH FOUND_NEXT _SETTLED,
PATH_IMPROVED, PATH_IMPROVED _NEXT_SETTLED

Edges: ADDED TO_SHORTEST PATH, REMOVED _FROM_SHORTEST PATH,
NOT_VISITED, VISITED, ON_SHORTEST_PATH

Although the software can distinguish all those attributes, I decided against choos-
ing a different color for each attribute to avoid color proliferation.

There are three observable parts of the system:

The graph notifies its observer when nodes or edges are added and deleted, or
the entire graph is replaced (e.g. loaded).

The algorithm publishes 3 types of events to its subscribers:
e Initialized, providing the number of steps the algorithm will needs

to finish.

e Step Changed, passing the current step number and all changes made
from the last step.

e Reset, sent when the algorithm is stopped.

The language choice is observable too. It is observed by all GUI elements that
need to output localized content.

The software can be divided into six logical subsystems which are explained in
the following and depicted in figure T}

3.1 Graphical User Interface
3.1.1 Swing components

This includes the panels for graph, algorithm and help. It also contains the intro-
duction window and the menu-, tool-, and status- bar.

All components listen for language changes to update their content accord-
ingly. They use resource injection (provided by |AppFrameworkl) from localized
property files to configure subcomponents such as labels and buttons.

4



Test Graphical User Interface

observe, observe,
use
control change

observe,

¥
Algorithm Input/Output Language

attributes

observe,
use
change node load, save
and edge
attributes

¥
Graph [«

Figure 1: Main components.

3.1.2 Graph
All parts that tie into to the JUNG?2| graph library:

Transformer take nodes and edges as input and return graphical properties mostly
based on their attributes (e.g. edge paint, edge stroke, node shape).

Graph Mouse controls the mouse interaction with the graph. It is based on a
plug-in architecture that passes mouse events along a hierarchy until they
are consumed.

Animation adds animation capabilities to the graph library by replacing the ren-
derers for the graph, nodes and edges. Animations are created from changes,
published by the algorithm in each step. Edges are additionally sorted into
several sets based on their attributes and painted in order of their current
importance. Unused edges are for instance painted first while edges that are
just added or removed to a path are painted on top of them.



3.2 Graph

The graph model consists of the abstract definitions for graphs, nodes and edges
and a graph manager that allows graph listeners to subscribe and be notified of
changes. The graph implementation realizes the graph model and is used by the
graph library. It also contains factories for graphs, nodes and edges and a pseudo-
planar graph generator.

3.3 Algorithm

Includes the implementation of Dijkstra’s algorithm, that encapsulates step changes
using the Command patternﬂ to offer undo-functionality. It also contains an algo-

rithm manager that decouples the algorithm from its listener. Note that the algo-

rithm only uses the abstract graph definition and isn’t coupled with the GUI nor

the graph library.

3.4 Language

Offers a locale manager that many GUI components observe to be notified of
language changes. Also includes generic translation for all classes that do not use
property files themselves.

3.5 Input/Output

Consists of a single class that is called by the GUI to load and save graphs from
and to files. Graph files are ordinary ZIP-archives containing XML-files that pri-
marily specify the nodes with their connections and locations. Other properties
like the selected start node and graph background image are saved too when avail-
able.

Using XML has the advantage of being human-readable and makes it easy to
change or generate files with other applications. Their disadvantage is the rather
big size in comparison to binary data. This is made up by using ZIP to compress
them. A ZIP file also has the advantage of bundling several files, only having one
file per graph that can even be extended later on. Adding a graph background is as
simple as unzipping with a standard archive program, adding a PNG background
image and zipping all files again.

2http ://en.wikipedia.org/wiki/Command_pattern


http://en.wikipedia.org/wiki/Command_pattern

3.6 Test

Contains a JUnit test for the algorithm with two test cases. The first is testing the
generation of a big graph and running the various phases of the algorithm with an
eye towards speed and memory consumption. The second and more important test
checks the algorithm for correctness. Steps are executed forward and backward
while checking node and edge attributes.

4 Libraries
The following libraries are used by the program. Some of my extensions and
customizations to JUNG2 are based on their source code.

Swing Application Framework (AppFramework) Simplifies Swing applications.
https://appframework.dev. java.net/

2nd Generation Java Universal Network Graph (JUNG2) Graph library.
https://jung2.dev. java.net/

Swing Worker Used by JUNG2 and AppFramework.
https://swingworker.dev. java.net/

Jakarta Commons-Collections (Generics-enabled version) Used by JUNG2.
http://sourceforge.net/projects/collections/

Colt Used by JUNG2.
http://dsd.lbl.gov/~hoschek/colt/

JGoodies Looks (Plastic Look & Feel) Java Look & Feel.
http://www. jgoodies.com/freeware/looks/

MiGLayout Swing Layout Manager.
http://www.miglayout.com/

Timing Framework Used for animations.
https://timingframework.dev. java.net/

XStream Used to serialize objects to XML and back again.
http://xstream.codehaus.org/

SwingX Swing Component Extensions.
https://swingx.dev.java.net/

Bare Bones Browser Launch Launch web browser.
http://www.centerkey.com/java/browser/


https://appframework.dev.java.net/
https://jung2.dev.java.net/
https://swingworker.dev.java.net/
http://sourceforge.net/projects/collections/
http://dsd.lbl.gov/~hoschek/colt/
http://www.jgoodies.com/freeware/looks/
http://www.miglayout.com/
https://timingframework.dev.java.net/
http://xstream.codehaus.org/
https://swingx.dev.java.net/
http://www.centerkey.com/java/browser/

	Task
	Rationale behind my solution
	Editing the graph
	Running the algorithm
	Help
	Language
	System requirements
	Appearance

	Software Design
	Graphical User Interface
	Swing components
	Graph

	Graph
	Algorithm
	Language
	Input/Output
	Test

	Libraries

