
Bandwidth Estimation and Rate Control in BitVampire

CPSC 527: Advanced Computer Networks

Mayukh Saubhasik
Department of Computer Science

University of British Columbia
Vancouver, B.C.
mayukh@cs.ubc.ca

Uwe Schmidt
Department of Computer Science

University of British Columbia
Vancouver, B.C.

uschmidt@cs.ubc.ca

ABSTRACT
We consider the problem of bandwidth estimation and rate
control in the context of the peer-to-peer video streaming
application BitVampire. BitVampire requires each peer to
maintain an estimate of its available upstream bandwidth.
This is needed by a scheduling algorithm which takes in-
formation about peer’s bandwidth into account in order to
minimize the initial buffering time when watching a video.
It is also an interesting problem in general, since P2P ap-
plications can generally offer a better quality of service if
they are aware of their bandwidth limitations. We looked
into the area of bandwidth estimation and evaluated their
applicability for the context of P2P applications. We found
that it is not easy to use them in this context since most
of them require very accurate timing and low level network
access which is often not given by high-level programming
languages like Java. We went for a pragmatic approach in-
stead, which uses round-trip-time measurements as an in-
dicator for the available bandwidth of a peer. We did a
prototype implementation in Java and evaluated it in the
LAN environment. Future work has to investigate about
the choice of many policy decisions which arose when creat-
ing the prototype.

1. MOTIVATION
This project is largely motivated by the need for accurate
bandwidth estimation in BitVampire [Liu and Vuong, 2006].
BitVampire is a peer-to-peer (P2P) video streaming soft-
ware, which is being actively developed here at UBC. Bit-
Vampire requires each peer to maintain an estimate of its
available upstream bandwidth. This is needed by a schedul-
ing algorithm which takes information about peer’s band-
width into account in order to minimize the initial buffering
time when watching a video. Although we are motivated
by BitVampire, bandwidth estimation is also an interesting
problem in general, since P2P applications can generally
offer a better quality of service if they are aware of their
bandwidth limitations.

BitVampire is a cost-effective P2P video streaming solution,
which aims to collate the individual peer’s resources to sup-
port large scale on-demand media streaming. The basic
idea of BitVampire is to split a published video in various
segments and distribute these segments among the peers.
When a peer requests to watch a video, it creates a schedule
which aggregates the bandwidth from various other peers
to stream the video. In order to do that it sends a request
to a number of peers, in possession of parts of the movie,

demanding a certain bandwidth value. Each of these peers
replies whether they can satisfy the request or not, subject
to their available bandwidth.

We are giving a brief overview over the rich body of work
which has already investigated in this problem. In section
2.4 we will explain why these methods aren’t applicable in
our context. As a result, we came up with a pragmatic
approach which is applicable in the context of any generic
P2P application. Although the accuracy of the method is
quite low, it makes up for this in terms of speed and ease of
implementation.

2. RELATED WORK
The bandwidth of a link can either be measured by pas-
sively monitoring the amount of traffic flowing through it,
or by actively probing the link to estimate its bandwidth.
The passive monitoring mechanism requires access to the
intermediate network elements or administrative resources,
whereas the active probing techniques can be run just on the
end hosts. Thus passive monitoring methods aren’t really
feasible except in a well controlled network testbed.

Active bandwidth estimation is a well studied field, which
has been around for at least 10 years. Despite that, there are
quite a few open problems within it. What makes the prob-
lem hard is its real-time nature and the need for a balance
between the amount of traffic generated, time taken and ac-
curacy of the measurements. Similar to all active measure-
ment techniques, the very act of measuring the bandwidth
tends to change it. This makes the problem even more chal-
lenging.

2.1 Terminology
A link is defined to be the interconnect between any two
network elements. For example, this could be between the
an end host and its gateway router or between any two in-
termediate routers.

Each link is modelled to have a constant delay and band-
width. The link latency is a constant delay which is a prop-
erty of the physical medium being used for transmission,
this value is independent of the amount of data being trans-
ferred. The bandwidth characterizes the rate at which data
can be sent over the link [Curtis and McGregor, 2001].

Therefore for a packet size P , the time taken to transmit it

1

mailto:mayukh@cs.ubc.ca
mailto:uschmidt@cs.ubc.ca

over a link t is given by

t =
P

b
+ l (1)

, where b is the link bandwidth and l the link latency. Some
of the key terms, used in further discussion, are:

Capacity bandwidth is the maximum bandwidth avail-
able on a link. This is a static value which doesn’t
change over time.

Available bandwidth refers to the currently available band-
width on a link. Thus this value may continuously vary
over time.

Bottleneck link of a path refers to the link with the min-
imum capacity bandwidth among all the links on a
path.

Path capacity bandwidth denotes the capacity bandwidth
of the bottleneck link.

Path available bandwidth is the available bandwidth of
the bottleneck link.

Cross traffic refers to all traffic going over a link, apart
from the traffic generated by the method itself.

We are mostly interested in the path capacity bandwidth
and the path available bandwidth. Note that a path in our
case is the sequence of links from one peer to another.

2.2 Single Packet Techniques
Single packet techniques work by sending probe packets,
which are then echoed back by the destination. The mea-
sured round-trip-time (RTT) values are used to form an es-
timate for the link bandwidth [Curtis and McGregor, 2001].

For example there are nodes A and B and a single link
between them. Node A sends a probe packet over the link
to node B. On getting the probe packet, node B simply
echos it back. On receipt of the response packet, node A
calculates the RTT value for it. This process is repeated for
different packet sizes to give a graph similar to figure 1 where
packet sizes are plotted against the RTTs. If the points do
not align on a perfect line, a linear fit is used to arrange the
measured data onto a line. As is evident from equation 1
the slope in such a plot gives the bandwidth value and the
constant intercept on the time axis is the fixed link latency.

Figure 1: Plot of packet size vs transmission time

The problem with this approach is that cross-traffic is de-
laying the transmission of the probe packets. Thus to cal-
culate the link capacity bandwidth, the measurements for
each packet size are repeated multiple times to discount for
cross traffic. The assumption is that at least one probe for
each packet size won’t get delayed by cross-traffic. For each
packet size, only the minimum recorded RTT is taken into
account while calculating the linear fit as illustrated in figure
2.

IEEE Network • November/December 2003 30

able bandwidth metric does not depend on a specific transport
protocol. The BTC depends on how TCP shares bandwidth
with other TCP flows, while the available bandwidth metric
assumes that the average traffic load remains constant and
estimates the additional bandwidth a path can offer before its
tight link is saturated. To illustrate this point, suppose a sin-
gle-link path with capacity C is saturated by a single TCP con-
nection. The available bandwidth in this path would be zero
due to path saturation, but the BTC would be about C/2 if the
BTC connection has the same RTT as the competing TCP
connection.

Bandwidth Estimation Techniques
This section describes existing bandwidth measurement
techniques for estimating capacity and available band-
width in individual hops and end-to-end paths. We focus
on four major techniques: variable packet size (VPS)
probing, packet pair/train dispersion (PPTD), self-loading
periodic streams (SLoPS), and trains of packet pairs
(TOPP). VPS estimates the capacity of individual hops,
PPTD estimates end-to-end capacity, and SLoPS and
TOPP estimate end-to-end available bandwidth. There is
no currently known technique to measure available band-
width of individual hops.

In the following we assume that during the measurement of
a path P its route remains the same and its traffic load is sta-
tionary. Dynamic changes in routing or load can create errors
in any measurement methodology. Unfortunately, most cur-
rently available tools do not check for dynamic route or load
changes during the measurement process.

Variable Packet Size Probing
VPS probing aims to measure the capacity of each hop along
a path. Bellovin [8] and Jacobson [9] were the first to pro-
pose and explore the VPS methodology. Subsequent work
improved the technique in several ways [10–12]. The key ele-
ment of the technique is to measure the RTT from the
source to each hop of the path as a function of the probing
packet size. VPS uses the time-to-live (TTL) field of the IP
header to force probing packets to expire at a particular hop.
The router at that hop discards the probing packets, return-
ing ICMP time-exceeded error messages back to the source.
The source uses the received ICMP packets to measure the
RTT to that hop.

The RTT to each hop consists of three delay compo-

nents in the forward and reverse paths: serial izat ion
delays, propagation delays, and queuing delays. The serial-
ization delay of a packet of size L at a link of transmission
rate C is the time to transmit the packet on the link, equal
to L/C. The propagation delay of a packet at a link is the
time it takes for each bit of the packet to traverse the link,
and is independent of the packet size. Finally, queuing
delays can occur in the buffers of routers or switches when
there is contention at the input or output ports of these
devices.

VPS sends multiple probing packets of a given size from
the sending host to each layer 3 device along the path. The
technique assumes that at least one of these packets, together
with the ICMP reply it generates, will not encounter any
queuing delays. Therefore, the minimum RTT measured for
each packet size will consist of two terms: a delay that is inde-
pendent of packet size and mostly due to propagation delays,
and a term proportional to the packet size due to serialization
delays at each link along the packet’s path. Specifically, the
minimum RTT Ti(L) for a given packet size L up to hop i is
expected to be

(7)

where:
• Ck: capacity kth hop
• α: delays up to hop i that do not depend on the probing

packet size L
• β i: slope of minimum RTT up to hop i against probing

packet size L, given by

(8)

Note that all ICMP replies have the same size, independent
of L; thus, the α term includes their serialization delay along
with the sum of all propagation delays in the forward and
reverse paths.

The minimum RTT measurements for each packet size up
to hop i estimates the term βi, as in Fig. 4. Repeating the min-
imum RTT measurement for each hop i = 1, …, H, the capac-
ity estimate at each hop i along the forward path is

β i
kk

i I
C

=
=
∑

1
.

T L
L

C
Li

k
i

k

i
() ,= + = +

=
∑α α β

1

! Figure 6. A histogram of capacity measurements from 1000
packet pair experiments in a 100 Mb/s path.

Bandwidth (Mb/s)

Path capacity: 100 Mb/s

Packet size: 1500 bytes

200
0

20

N
um

be
r

of
 m

ea
su

re
m

en
ts

40

60

80

100

120

140

40 60 80 100 120 140

! Figure 4. RTT measurements, minimum RTTs, and the least
squares linear fit of the minimum RTTs for the first hop of a
path.

Probing packet size (bytes)

1400 16000
0.25

RT
T

(m
s)

0.375

0.5

0.625

0.75

12001000800600400200

RTT
Minimum RTT
Linear fit

Figure 2: Multiple measurements. Source: [Prasad
et al., 2003]

In order to get the path capacity bandwidth using this meth-
od, the link capacity bandwidth for each link along the path
has to be calculated. The RTT value for a link N is given
by equation 2, wherein we take into account the RTT values
for all preceding links 1, . . . , N . Therefore if one knows the
RTT values for all the preceding links, one can easily calcu-
late the link bandwidth for the current link. Starting from
the source, each successive router along the path to the des-
tination is forced to reply to the UDP ping, by setting the
appropriate time to live (TTL) field in the IP packet header.
Each router decrements the value of this field, and the router
which decrements it to zero, replies back to the source with
a special ICMP packet. Thus by increasing the range of the
UDP ping packet one hop at a time, the bandwidth for each
individual link can be calculated.

tN =
P

bn
+ lN +

N−1X
i=1

ti (2)

2.3 Packet Pair Techniques
The packet pair techniques are ideal for measuring the path
capacity / available bandwidth. They work by sending two
equal sized packets one after another from the source node
to the destination node. The destination node measures the
arrival delay between the two packets. The delay between
the packets is determined by the queuing delay on the bot-
tleneck link along the way [Lai and Baker, 2001]. A simple
proof for this is as follows:

Let us consider a scenario as shown in figure 4. The pack-
ets arrive at some intermediate router 0 with a inter-packet
delay of x. Further for the sake of simplicity let us assume
packet1 arrives at time zero, therefore packet2 arrives at
time x.

2

Figure 3: The delay between the packets, caused
by queuing at the bottleneck link, remains constant
throughout the rest of the path.

If the time required to send the packet over link 1 is d,
then packet1 arrives at router 1 at time d. Since link 1 is
the bottleneck link x < d, therefore packet2 has to wait till
packet1 is completely transferred before it begins transmis-
sion. Therefore packet2 arrives at time x, and waits up to
time d to begin transmission, and consequently arrives at
router 1 at time d + d = 2d. Therefore the new inter-packet
delay is 2d− (d) = d.

Now, let us consider the next hop, assume the time to trans-
fer over this link is d′. d > d′ as link 1 is the bottleneck.
Now packet1 arrives at router 2 at time d + d′ and packet2
arrives at time 2d + d′. packet1 finishes transmitting from
router 1 at time d+d′, and packet2 arrives at time 2d. Since
d > d′ =⇒ 2d > d + d′, thus there is no queuing at router
1.

The new inter-packet delay = 2d + d′ − (d + d′) = d, thus
the inter-packet delay stays constant at d.

Figure 4: Example scenario, for a simple proof

The inter-packet delay is equal to the time the router at the
end of the limiting link spent receiving the second packet,
after the first packet was received. Since the second packet
was already queued up in the sending router for a while
before it got transmitted, it can utilize this time to do all
the required look-ups needed to forward the packet. Thus
the second packet does not incur the overhead of the fixed
delay while being sent. Equation 3 is used to calculate the
bandwidth value.

d =
P

b̃
(3)

where d is the inter-packet delay, P is the packet size, b̃ is
the is the bottleneck link bandwidth. Similar to the single
packet technique, multiple measurements are needed to dis-
count for cross traffic and thus to accurately calculate the
path capacity bandwidth.

2.4 Shortcomings
Both of the above methods for bandwidth estimation have
their limitations. Additionally there are problems to use
them in our context of BitVampire.

2.4.1 Single Packet Techniques
• It assumes that the link bandwidths are symmetric in

nature, i.e. the bandwidth for the forward and reverse
path is the same. This assumption is mostly not true.

• To calculate the bandwidth for a certain link on the
path, the method relies on the RTT measurements for
all the preceding links. The method fails if any of the
routers along the path does not respond to the probe
packets.

• It assumes that the packet transfer time is directly pro-
portional to the packet size. This may not be true. For
example, some router may copy a 128 byte data packet
disproportionately faster than a 129 byte packet.

2.4.2 Packet Pair Techniques
• The measurement software needs to be running at both

ends.

• The method assumes that the routers perform First
in First Out (FIFO) queuing, this may not always be
true. Some routers perform a weighted fair queuing.

• Similar to the single packet technique it assumes that
the time to transfer is directly proportional to the
packet size.

• It requires the ability to measure time at a fine grained
level, since the inter-packet delay tends to be quite
small as compared to a RTT measurement.

2.4.3 Problems in the context of BitVampire
Both methods are hard to implement and use in the context
of BitVampire. The BitVampire code base is entirely written
in Java. Java networking does not have any support for raw
sockets. Therefore it is not possible to set the TTL value
for a packet or even send out an ICMP packet using Java’s
networking library. Java only supports time measurement
at the level of milliseconds, this is not enough for the packet
pair techniques to work in all scenarios. In case of high-
speed links, the inter-packet delay can be in the range of a
few microseconds.

To calculate the path capacity bandwidth, both methods
need to send a lot of probe packets and thus a considerable
amount of time to discount for the cross traffic. This is not
really a feasible solution in our context, since we need to
update the estimated bandwidth value frequently.

3. PRAGMATIC APPROACH
This section deals with the pragmatic approach that we took
because of the aforementioned problems.

3.1 Assumptions
All traffic, UDP and TCP, has to go through the same IP
send buffer on a single peer. Uploading at a very fast rate
causes the IP send buffer to be congested and thus slows

3

down other uploads on the same machine. But not only
that, TCP downloads are also affected because TCP requires
to send acknowledgment packets (ACKs) to provide reliable
data transfer. In summary, indiscriminate uploading will
slow down all downloads which is a serious problem for a
P2P application.

BitTorrent had the same problem, and as a effect most Bit-
Torrent clients introduced the possibility for the user to
manually set an upload rate limit to prevent the slowdown
of incoming traffic.

3.2 Problems to be solved
We are concerned with maintaining a single value Bw for
the available upstream bandwidth which can be used by the
BitVampire application. Bw varies over time because of
other applications using network resources. We additionally
need the value Bwavail which is needed to decide whether to
admit a new upload request (with a certain rate) by another
peer. Let U1, . . . , UN be the currently running uploads, then
Bwavail can be simply calculated as

Bwavail = Bw −
NX

i=1

rate(Ui) (4)

, where rate(Ui) is the maximum allowed upload rate for this
upload. This value is explicitly requested by the recipient in
the beginning and it is guaranteed that the upload rate will
stay below that value at all times. To give this guarantee,
we have to throttle the upload to each peer individually.

Adjust
Rate?

RTT Measurements

Current
Uploads

upload rate influences

Request
Admission

yes updateno

Bw Bwavail

Figure 5: Our approach

The most important and challenging part is how to make
the decision whether the global upload rate has to be ad-
justed. Even when the decision has been made, it still has
to be decided by how much to adjust the rate and how to
distribute the change to multiple running uploads. The goal
of decreasing the upload rate is to avoid slowing down other
connections on the same machine. Using a very slow upload
rate, far below the available upstream bandwidth, wastes
precious network resources on the other hand. Thus we also
have to consider increasing the upload rate.

Our proposed solution about these problems is discussed in
the following.

3.3 Available Bandwidth Detection
We were initially concerned with the automatic detection
of the user’s maximum upstream bandwidth. We wanted
to avoid letting the user set it manually because she may
often not know what her maximum upload rate, assigned
by her Internet Service Provider (ISP), is. Even if the user

is aware of that, she could change locations and connect
to a different network and thus would have to reconfigure
this value. In addition to that, what we really want is the
currently available bandwidth to the BitVampire application
(Bw). This value potentially varies a lot over time and is
therefore not static like the maximum upstream bandwidth.

Our approach is to periodically send probe packets (like
ping) to other peers and measure the observed RTT. The
RTT is an indicator for the queue length of the IP send
buffer, since a longer queue causes a longer delay to send
the data (figure 6).

TCP ACKs

Probe packets

TCP/UDP Uploads
Queue Length

IP Send Buffer

Figure 6: IP Send Buffer

The delay caused by the recipient of a probe packet is in-
cluded in the RTT value, so that an increased RTT not nec-
essarily gives us information about our own queue length.
But if we send probes to multiple peers at the same time
and collect all RTT measurements, we can assume that the
delays caused by each peer are uncorrelated. Thus if we ag-
gregate all RTT measurements to multiple peers at the same
time, we can find out about the level of congestion of our
IP send buffer. This level of congestion gives information
about the utilization of the network link. For instance high
RTTs indicate a long IP send buffer queue which indicates
low available bandwidth.

Additional to the RTT, we also measure the inter-packet
delay, using a packet pair technique like in section 2.3. We
send two packets back-to-back to the other side. When the
first packet is received, the recipient records the arrival-time
for that packet. Upon the arrival of the second packet, the
delay between the packet arrivals is calculated and included
in the response to the sender. We included this form of
measurements because it is easy to implement and gives us
additional information which may help to develop better
decision methods.

3.4 Closed-loop Control Systems
Our model of RTTs and upload rate can be considered a
closed-loop control system [Barr, 2003], since it utilizes feed-
back in form of RTT measurements to control the input sig-
nal (the upload rates) of a plant (the currently running up-
loads). A diagram of this can be seen in figure 5.

A simple form of control in these systems is proportional-
integral-derivative (PID) control. This method makes use
of the proportional, integral and derivative part of the mea-
sured feedback value. To use an example from [Barr, 2003],
the goal could be to control the temperature of a room with a
heater. The measured input signal is the temperature given
by a thermometer. Then the state of the heater is controlled

4

until the desired temperature is achieved. One thing must
be noticed here: A desired value for the temperature must
be given, otherwise it is not clear how to control the heater.

3.4.1 Azureus Auto Speed
The Auto Speed - plugin [Chalouhi, 2006] for the BitTorrent-
Client Azureus1 is presumably based on the same assump-
tions as explained in section 3.1. It adjusts the global upload-
rate of Azureus based on the periodically measured RTTs
(pings) to a single fixed host (e.g. www.google.com). At the
time of writing, it is one of the most popular plugins for
Azureus, being downloaded over 33500 times.

It can be considered a simple proportional controller to ad-
just the global upload rate given the RTT measurements.
Given a desired target value desired for the RTT, it con-
trols the upload rate using the average of the last 5 RTT
measurements average. It checks whether

2/3 · desired ≤ average ≤ 3/2 · desired (5)

, and only if average lies outside these bounds, it adjusts
the upload rate as follows:

• Decrease upload rate proportionally by 1 + 4
9

average
desired

,
if average > 3/2 · desired.

• Increase upload rate proportionally by 1 + 4
9

desired
average

,

if average < 2/3 · desired.

Please note that this simple controller needs a user set target
value desired, otherwise it is not possible to control the RTT
measurements.

3.4.2 Problems
The problem with the above approach is that we ping multi-
ple peers at the same time in our case, which can be located
anywhere in the world. Thus the observed RTTs for each
peer will vary a lot and it is not clear what the desired value
for each peer is.

We could take the same approach as the Auto Speed plugin
and just ping a single host (ping server), in which case we
may assume a known target value, at least for peers in a cer-
tain geographic area. This approach also has its problems.
If all peers are pinging the same host, it could become over-
loaded given a large number of peers pinging at the same
time. The ping server would also become a single source of
failure. The whole bandwidth estimation and rate control
would not work anymore if it is down. But even variations
in buffer congestion on the ping server side will affect the
RTTs for all peers in the network. Thus all peers will change
their upload rate, which would lead to a sudden change for
the whole P2P network.

These are all reasons why we took the approach to ping
a set of peers. We have the problem that we don’t have
a target value for the RTTs. This makes it impossible to
control the upload rates in a way which results in stable RTT
measurements. Our current decision method only takes the
change in RTTs into account and controls the upload rate
based on that. But this will never result in a stable system.
1http://azureus.sourceforge.net

4. IMPLEMENTATION
This section deals with the implementation of our proposed
approach and gives details on the various parts of it. We
didn’t modify the current source code of BitVampire since
it is heavily modified at the moment. Instead we wrote a
separate server and client application to test our approach.

The client is started on demand and and connects to the
server. It simply requests a download with a random bit-
rate. During this start-up, the client also starts a UdpPingServer,
which runs in a separate thread on the client side. Its pur-
pose is to wait in the background until the server sends a
UDP packet probe. It replies in an appropriate way (see
section 3.3) on receipt of a packet.

The server, once started, waits for incoming upload requests
by clients. An incoming request with rate r is only ac-
cepted if r ≤ Bwavail. Bwavail is calculated as in equation
4. If accepted, a new throttled upload with the requested
rate as limit is created. The details on upload throttling
are explained in the next section. Additionally, the new
client is added to the list of peers which are constantly
“pinged” to measure the RTTs. This is done by the class
RoundTripProber which periodically sends probe packets to
a set of peers. Two components are fed the RTTs after each
“round of probe packets”: the GUI to visualize the data and
the Brain which is currently recording the history of RTTs
for each peer. The Brain is also responsible for making the
decision whether to adjust the upload rate. If the decision is
yes, it also has to decide by how much to change the upload
rate.

4.1 Bandwidth Throttling
To throttle the bandwidth of a stream, we sub-divide each
second into smaller windows depending on the granularity
of required control. Given the desired bandwidth in terms
of bytes per second, and given the window size, one can
calculate the bytes per window. Then keep track of the
number of bytes written per window, and disallow any more
writes once the per window quota is reached. The write
call is blocked till the end of this current window. Once a
new window begins the quota is replenished. The accuracy
of control depends on the window size. A smaller window
size gives better accuracy at the cost of higher and more
frequent computation. A window size of 10 milliseconds
seems to work well in practice.

4.2 RTT Probing
The collected RTTs usually show a lot of variation. They
have a lot of outliers in form of high RTTs even if most
values are very low (figure 7). For this reason, we calculated
the gradients (rate of change) for the last 20 measurements
and took the average value of them as an indicator whether
the RTTs in general are going up or not. We currently
only consider the RTT values to a single peer. The average
gradient is very useful to “filter out” outliers in form of
occasional spikes.

4.3 Policy Decisions
In our implementation we took a number of policy decisions.
These techniques and parametric values are subject to im-
provement for better performance and accuracy. Presented

5

http://azureus.sourceforge.net

Figure 7: RTTs for transfer over Wireless LAN

below are the most important decisions we made, along with
an explanation of the trade-offs.

Ping frequency: How often to ping potentially determines
the rate at which we make adjustments to our estimated
bandwidth value. If this frequency is too low, our estimate
would be out of sync with the actual current value. A too
high frequency would increase the computational costs and
also doesn’t leave enough time to ping all the peers and to
process the data in that short period of time.

Ping packet size: The size of the packet size determines how
long it takes to send it. The packet size should be such that
it doesn’t cause a disproportionate jump in the transfer time
for the intermediate routers.

Hosts to ping: We must decide on the set of hosts to ping.
This can either be a set of fixed hosts or we can ping a subset
of the peers to whom we’re currently uploading. The size
of the set is also an important decision, it must balance the
time taken to ping them all versus the increased accuracy
gained from pinging multiple peers. The advantages and
disadvantages are discussed in section 3.4.2.

Collating the data: We have to decide on the methods used
to collate the RTT values from each host we ping. One
possible approach would be to consider the trend in the ma-
jority of them. That is calculating whether the RTT values
are increasing or decreasing for the majority of them, and
take this as the overall trend.

Threshold for taking an action: We have to decide when to
take any action, when to increase / decrease our estimated
bandwidth depending on the RTT data collected.

Rate of increment / decrement: Decide on the amount by
which the estimated bandwidth will be incremented / decre-
mented. If the value is too low then it will take quite a long
time to converge to the actual bandwidth value. If the value
is too high, it will cause oscillations around the desired band-
width value, wherein the desired value is constantly under-
or over-estimated.

Decrease in rate: Decide on the policy by which the global
decrease in bandwidth is distributed among the various cur-

rently running uploads of a peer.

5. FUTURE WORK
Future work has mainly to investigate how to control the
upload rates to get stable RTT measurements. And this
has to be done without the need of the user to set desired
RTTs, which is also not feasible for our scenario of pinging
multiple peers.

In order to do that, we need to deploy the application on
several peers connected over the Internet. Only then can we
run realistic tests. For these tests the maximum upload and
download rate for each peers should be known (the up- and
down-load rate from the ISP). Additional software on the
peer’s machines can measure the total up- and down-load
rate at any given time, an observation which is normally
not available for a P2P application. Experiments with dif-
ferent policies (as described in the previous section) can then
be done. All data like the RTTs and inter-packet delays
should be collected for later analysis. The analysis could
show which policies prove to be successful in which scenar-
ios.

It would also be interesting to apply machine learning tech-
niques to this problem. The trace data of the aforemen-
tioned experiments could be used as input for machine learn-
ing techniques to learn good polices, given certain situa-
tions.

Acknowledgment
We would like to thank Dr. Son Vuong and Stanley Chiu
for the helpful discussions and ideas.

References
M. Barr. Closed-Loop Control. Embedded Systems Pro-

gramming, pages 55–56, August 2003.
http://www.netrino.com/Publications/Glossary/

PID.php.

O. Chalouhi. Azureus Auto Speed Plugin, 2006.
http://azureus.sourceforge.net/plugin details.

php?plugin=autospeed.

J. Curtis and T. McGregor. Review of bandwidth estima-
tion techniques. New Zealand Computer Science Research
Students Conference, 8(3), 2001.

K. Lai and M. Baker. Nettimer: A tool for measuring bot-
tleneck link bandwidth. Proceedings of the USENIX Sym-
posium on Internet Technologies and Systems, 134, 2001.

X. Liu and S.T. Vuong. A Cost-Effective Peer-to-Peer Ar-
chitecture for Large-Scale On-Demand Media Streaming.
JOURNAL OF MULTIMEDIA, 1(2), 2006.

R. Prasad, C. Dovrolis, M. Murray, and K. Claffy. Band-
width estimation: metrics, measurement techniques, and
tools. Network, IEEE, 17(6):27–35, 2003.

6

http://www.netrino.com/Publications/Glossary/PID.php
http://www.netrino.com/Publications/Glossary/PID.php
http://azureus.sourceforge.net/plugin_details.php?plugin=autospeed
http://azureus.sourceforge.net/plugin_details.php?plugin=autospeed

	Motivation
	Related work
	Terminology
	Single Packet Techniques
	Packet Pair Techniques
	Shortcomings
	Single Packet Techniques
	Packet Pair Techniques
	Problems in the context of BitVampire

	Pragmatic approach
	Assumptions
	Problems to be solved
	Available Bandwidth Detection
	Closed-loop Control Systems
	Azureus Auto Speed
	Problems

	Implementation
	Bandwidth Throttling
	RTT Probing
	Policy Decisions

	Future Work

