A Generative Perspective on MRFs in Low-Level Vision Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt, Germany

Introduction

Goal:

- Understand generative properties of MRF models of natural images. **Questions:**
- How can we evaluate generative MRF models?
- How well do typical image priors capture the statistical properties of natural images?

Previous methods:

- Use application-specific evaluation in the context of MAP estimation.
- Analyzing the statistical properties via single-site Gibbs sampling not very practical [9].

Our approach:

- Exploit rapidly mixing Gibbs sampler for MRF priors [2, 3].
- Analyze the generative properties with efficient sampler.
- Learn better generative MRFs based on flexible GSM potentials.
- Use sampling-based MMSE estimation for inference.

Consecutive samples from MRF image priors using the efficient Gibbs sampler

Flexible MRF framework Fields-of-Experts image prior [5]:

$$p(\mathbf{x}; \boldsymbol{\Theta}) = \frac{1}{Z(\boldsymbol{\Theta})} e^{-\epsilon \|\mathbf{x}\|^2/2} \prod_{c \in \mathcal{C}} \prod_{i=1}^{N} \phi(\mathbf{J}_i^{\mathrm{T}} \mathbf{x}_{(c)}; \boldsymbol{\alpha}_i)$$

• Use flexible Gaussian scale mixtures (GSMs) as experts [8]:

$$\phi(\mathbf{J}_i^{\mathrm{T}}\mathbf{x}_{(c)}; \boldsymbol{\alpha}_i) = \sum_{j=1}^J \alpha_{ij} \cdot \mathcal{N}(\mathbf{J}_i^{\mathrm{T}}\mathbf{x}_{(c)}; 0, \sigma_i^2 / s_j)$$

• Subsumes many popular pairwise and high-order models.

Efficient auxiliary-variable Gibbs sampler [2]:

- Retain the scales of the GSM as a hidden random vector z.
- Define a joint distribution $p(\mathbf{x}, \mathbf{z}; \boldsymbol{\Theta})$ such that

$$\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \mathbf{\Theta}) = p(\mathbf{x}; \mathbf{\Theta})$$

• This allows to define an auxiliary-variable Gibbs sampler that alternates between sampling

$$^{(t+1)} \sim p(\mathbf{z}|\mathbf{x}^{(t)}; \mathbf{\Theta})$$
 and $\mathbf{x}^{(t+1)} \sim p(\mathbf{x}|\mathbf{z}^{(t+1)}; \mathbf{\Theta})$

• From the defined model, we have the conditionals

$$(z_{ic}|\mathbf{x}; \mathbf{\Theta}) \propto \alpha_{iz_{ic}} \cdot \mathcal{N}(\mathbf{J}_i^{\mathrm{T}} \mathbf{x}_{(c)}; 0, \sigma_i^2 / s_{z_{ic}})$$

$$p(\mathbf{x}|\mathbf{z};\boldsymbol{\Theta}) \propto \mathcal{N}\left(\mathbf{x};\mathbf{0}, \left(\epsilon \mathbf{I} + \sum_{i=1}^{N} \mathbf{W}_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\mathrm{T}}\right)^{-1}\right) = \mathcal{N}\left(\mathbf{x};\mathbf{0}, \left(\mathbf{W} \mathbf{Z} \mathbf{W}^{\mathrm{T}}\right)^{-1}\right)$$

- Obtain a sample x by solving a least-squares problem [3, 7] $\mathbf{W}\mathbf{Z}\mathbf{W}^{\mathrm{T}}\mathbf{x} = \mathbf{W}\sqrt{\mathbf{Z}}\mathbf{y}, \qquad \mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Convergence monitoring shows that the sampler mixes very rapidly.

• High-order model better captures long-range dependencies.

Improved, learned MRFs:

- Pairwise MRF: fixed horizontal and vertical derivative filters, learn shape of single, more flexible GSM potential.
- FoE: 3x3 cliques, 8 GSM experts; learn expert shapes and filters.
- Trained with Contrastive Divergence.
- Avoid boundary artifacts of samples by conditional sampling of the interior pixels, given the boundary pixels.

Image restoration

Common method – MAP:

- $\hat{\mathbf{x}} = \arg\max_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}; \mathbf{\Theta}) = \arg\max_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}) \cdot p(\mathbf{x}; \mathbf{\Theta})^{\lambda}$
- Regularization weight λ often used to improve performance.
- Point estimate makes no use of uncertainty.
- Often see staircasing artifacts with heavy-tailed potentials.
- Low correlation between generative quality of the model and its performance in terms of image restoration.

Our method – MMSE:

• Bayesian minimum mean squared error estimate:

 $\hat{\mathbf{x}} = \arg\min_{\tilde{\mathbf{x}}} \int ||\tilde{\mathbf{x}} - \mathbf{x}||^2 p(\mathbf{x}|\mathbf{y}; \mathbf{\Theta}) \, \mathrm{d}\mathbf{x} = E[\mathbf{x}|\mathbf{y}]$

- Compute the average of a large number of posterior samples.
- The auxiliary-variable Gibbs sampler extends to the posterior for Gaussian likelihood models [3].
- Use multiple Markov chains to assess sampler convergence.
- Readily applies to image denoising, inpainting, interpolation, ...

Benefits from MMSE estimation:

- Improved quantitive results: PSNR, SSIM.
- No staircasing artifacts (piecewise-constant regions).
- Marginal statistics of output images match those of originals well.

KLD=1.64 - - KI D = 0.03MMSE clean original images **Derivative statistics o** 10 denoised test images

• Better generative models lead to better denoising performance.

Correlation test using pairwise MRF with generalized Laplacian potential and different parameters.

• Practical because of efficient Gibbs sampler; easily parallelized.

Efficiency of MMSE denoising when assuming parallel computing with learned pairwise MRF

Efficiency of sampling-based MMSE denoising, comparing to CG-based MAP w/ λ .

Image denoising:

- Assume additive white Gaussian noise with known variance.
- Sampling conditional distribution of scales z is straightforward. • Conditional distribution of image \mathbf{x} is a Gaussian
- $p(\mathbf{x}|\mathbf{y},\mathbf{z};\mathbf{\Theta}) = \mathcal{N}(\mathbf{x};\widetilde{\mathbf{\Sigma}}\mathbf{y}/\sigma^2,\widetilde{\mathbf{\Sigma}}) \text{ where } \widetilde{\mathbf{\Sigma}} = (\mathbf{I}/\sigma^2 + \mathbf{\Sigma}^{-1})^{-1}$
- For assessing convergence, run 4 parallel Markov chains.

TECHNISCHE UNIVERSITÄT DARMSTADT

Denoising results

Original image

Noisy image (σ=25) 20.34dB

5x5 FoE from [5] MAP w/λ, 25.36dB

MMSE. 26.12dB

5x5 discrimin. FoE from [6] MAP. 26.19dB

Learned 3x3 FoE MMSE, 26.27dB

Table 1. Denoising results (average PSNR in dB) for 10 test images

			/		<u> </u>	
Model	MAP		MAP w/λ		MMSE	
	σ=10	σ=20	σ=10	σ=20	σ=10	σ=20
pairwise (marginal fit)	28.35	23.96	30.98	26.92	29.70	24.72
pairwise (generalized Laplacian)	27.35	22.97	31.54	27.59	28.64	23.92
pairwise (Laplacian)	29.36	24.27	31.91	28.11	30.34	25.47
pairwise (ours)	30.27	26.48	30.41	26.55	32.09	28.32
5x5 FoE (Roth & Black [5])	27.92	23.81	32.63	28.92	29.38	24.95
15x15 FoE (Weiss & Freeman [8])	22.51	20.45	32.27	28.47	23.22	21.47
3x3 FoE (ours)	30.33	25.15	32.19	27.98	32.85	28.91
Table 2, De	enoisina res	ults for 68 te	est images [/	4, 5] (σ=25)		
Model	Learning		Inference		avg. PSNR (dB)	
5x5 FoE (Roth & Black [5])	CD (generative)		MAP w/λ		27.44	
5x5 FoE (Samuel & Tappen [6])	discriminative		MAP		27.86	
pairwise (ours)	CD (generative)		MMSE		27.54	
3x3 FoE (ours)	CD (generative)		MMSE		27.95	
Non-local means (Buades et al. [1])			(MMSE)		27.50	
BLS-GSM (Portilla et al. [4])			MMSE		28.02	

Summary

- Evaluated MRFs through their generative properties, based on a flexible framework with an efficient sampler.
- Common image priors are surprisingly poor generative models.
- Learned better generative MRFs (pairwise & high-order) peakier potentials than considered before.
- Sampling-based MMSE estimation allows generic generative models to compete with recent discriminative models; the MMSE estimate even has a number of additional benefits.

References

[1] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. CVPR 2005.

- [2] D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization. IEEE TIP, 4(7), 1995. [3] E. Levi. Using natural image priors – Maximizing or sampling? Master's thesis, The Hebrew University of Jerusalem,
- [4] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE TIP, 12(11), 2003.
- [5] S. Roth and M. J. Black. Fields of experts. IJCV, 82(2), 2009.
- [6] K. G. G. Samuel and M. F. Tappen. Learning optimized MAP estimates in continuously-valued MRF models. CVPR
- [7] Y. Weiss. Personal communication. 2005.
- [8] Y. Weiss and W. T. Freeman. What makes a good model of natural images? CVPR 2007. [9] S. C. Zhu and D. Mumford. Prior learning and Gibbs reaction-diffusion. PAMI, 19(11), 1997