
Generative properties of MRF image priors
Evaluation methodology:

• Draw a large number of samples from the model.
• Compute marginal distributions of certain image features (e.g., 

derivatives, model features) from the samples.
• Compute the marginal KL-divergence between statistics of natural 

images and samples from the model. 
Compare the generative properties of different MRFs:

• Enable sampling other models by fitting GSMs to their potentials.
• For pairwise MRFs, directly compare the derivative statistics: 

• For high-order MRFs, evaluate each model w.r.t. its learned filters:

Some additional generative properties of our models:
• Random filter statistics and multi-scale derivative statistics.
• High-order model better captures long-range dependencies.

Improved, learned MRFs:
• Pairwise MRF: fixed horizontal and vertical derivative filters, learn 

shape of single, more flexible GSM potential.
• FoE: 3x3 cliques, 8 GSM experts; learn expert shapes and filters. 
• Trained with Contrastive Divergence.
• Avoid boundary artifacts of samples by conditional sampling of the 

interior pixels, given the boundary pixels.

Flexible MRF framework
Fields-of-Experts image prior [5]:

• Use flexible Gaussian scale mixtures (GSMs) as experts [8]:

• Subsumes many popular pairwise and high-order models.

Efficient auxiliary-variable Gibbs sampler [2]:
• Retain the scales of the GSM as a hidden random vector z.
• Define a joint distribution p(x, z; Θ) such that

• This allows to define an auxiliary-variable Gibbs sampler that 
alternates between sampling

• From the defined model, we have the conditionals

• Obtain a sample x by solving a least-squares problem [3, 7]

• Convergence monitoring shows that the sampler mixes very rapidly.

Denoising results
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Summary

Image restorationIntroduction
Common method – MAP:

• Regularization weight λ often used to improve performance.

• Point estimate - makes no use of uncertainty.
• Often see staircasing artifacts with heavy-tailed potentials.
• Low correlation between generative quality of the model and its 

performance in terms of image restoration.

Our method – MMSE:
• Bayesian minimum mean squared error estimate:

• Compute the average of a large number of posterior samples.
• The auxiliary-variable Gibbs sampler extends to the posterior for 

Gaussian likelihood models [3].
• Use multiple Markov chains to assess sampler convergence.
• Readily applies to image denoising, inpainting, interpolation, ...

Benefits from MMSE estimation:
• Improved quantitive results: PSNR, SSIM.
• No staircasing artifacts (piecewise-constant regions).
• Marginal statistics of output images match those of originals well. 

• Better generative models lead to better denoising performance.

• Practical because of efficient Gibbs sampler; easily parallelized.  

Image denoising:
• Assume additive white Gaussian noise with known variance.
• Sampling conditional distribution of scales z is straightforward.
• Conditional distribution of image x is a Gaussian

• For assessing convergence, run 4 parallel Markov chains.

Goal:
• Understand generative properties of MRF models of natural images. 

Questions: 
• How can we evaluate generative MRF models? 
• How well do typical image priors capture the statistical properties of 

natural images?  
Previous methods:

• Use application-specific evaluation in the context of MAP estimation.
• Analyzing the statistical properties via single-site Gibbs sampling not 

very practical [9].
Our approach:

• Exploit rapidly mixing Gibbs sampler for MRF priors [2, 3].
• Analyze the generative properties with efficient sampler.
• Learn better generative MRFs based on flexible GSM potentials.
• Use sampling-based MMSE estimation for inference.
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• Evaluated MRFs through their generative properties, based on a 
flexible framework with an efficient sampler.

• Common image priors are surprisingly poor generative models.
• Learned better generative MRFs (pairwise & high-order) - peakier 

potentials than considered before.
• Sampling-based MMSE estimation allows generic generative models 

to compete with recent discriminative models; the MMSE estimate 
even has a number of additional benefits.
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Table 1. Denoising results (average PSNR in dB) for 10 test imagesTable 1. Denoising results (average PSNR in dB) for 10 test imagesTable 1. Denoising results (average PSNR in dB) for 10 test imagesTable 1. Denoising results (average PSNR in dB) for 10 test imagesTable 1. Denoising results (average PSNR in dB) for 10 test imagesTable 1. Denoising results (average PSNR in dB) for 10 test imagesTable 1. Denoising results (average PSNR in dB) for 10 test images

Model MAPMAP MAP w/λMAP w/λ MMSEMMSEModel
σ=10 σ=20 σ=10 σ=20 σ=10 σ=20

pairwise (marginal fit) 28.35 23.96 30.98 26.92 29.70 24.72
pairwise (generalized Laplacian) 27.35 22.97 31.54 27.59 28.64 23.92
pairwise (Laplacian) 29.36 24.27 31.91 28.11 30.34 25.47
pairwise (ours) 30.27 26.48 30.41 26.55 32.09 28.32
5x5 FoE (Roth & Black [5]) 27.92 23.81 32.63 28.92 29.38 24.95
15x15 FoE (Weiss & Freeman [8]) 22.51 20.45 32.27 28.47 23.22 21.47
3x3 FoE (ours) 30.33 25.15 32.19 27.98 32.85 28.91

Table 2. Denoising results for 68 test images [4, 5] (σ=25)Table 2. Denoising results for 68 test images [4, 5] (σ=25)Table 2. Denoising results for 68 test images [4, 5] (σ=25)Table 2. Denoising results for 68 test images [4, 5] (σ=25)
Model Learning Inference avg. PSNR (dB)
5x5 FoE (Roth & Black [5]) CD (generative) MAP w/λ 27.44
5x5 FoE (Samuel & Tappen [6]) discriminative MAP 27.86
pairwise (ours) CD (generative) MMSE 27.54
3x3 FoE (ours) CD (generative) MMSE 27.95
Non-local means (Buades et al. [1]) -- (MMSE) 27.50
BLS-GSM (Portilla et al. [4]) -- MMSE 28.02
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Correlation test using pairwise MRF with generalized Laplacian potential and different parameters.
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Consecutive samples from MRF image priors using the efficient Gibbs sampler
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Derivative marginals

−200 −100 0 100 200

10−5

10−3

10−1 (b)
KLD = 1.57

KLD = 0.006

KLD = 1.37

Natural 
images

−200 −100 0 100 200

10−5

10−3

10−1 (a)

Our learned 
GSM
Fit to the 
marginals
Generalized 
Laplacian

Pairwise MRF potentials Peakier than previously 
considered potentials

x̂ = arg max
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p(x|y;Θ) = arg max
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