# A Generative Perspective on MRFs in Low-Level Vision







#### Department of Computer Science TU Darmstadt



#### **Low-Level Vision**



**Stereo** 

















**Optical Flow** 

Uwe Schmidt, Qi Gao, Stefan Roth: A Generative Perspective on MRFs in Low-Level Vision | CVPR 2010 | 2



#### **Low-Level Vision**



**Stereo** 

Super-Resolution





Generative MRF Priors







**Optical Flow** 

Uwe Schmidt, Qi Gao, Stefan Roth: A Generative Perspective on MRFs in Low-Level Vision | CVPR 2010 | 2







### **Desirable MRF Evaluation**



Purpose of MRF priors Difficult! **MRF** prior Model statistical properties of natural images and scenes Draw samples Evaluate generative properties [Zhu & Mumford '97] (MCMC) e.g. derivative statistics of the model neglected ever since Compare statistical properties **MRF** samples

Uwe Schmidt, Qi Gao, Stefan Roth: A Generative Perspective on MRFs in Low-Level Vision | CVPR 2010 | 4

Data



#### Agenda



- 1. Evaluate generative properties of common image priors
  - Pairwise & high-order MRFs
  - Based on a flexible MRF framework with an efficient sampler
- 2. Learn improved generative models
- 3. Find that in the context of MAP estimation our models do not perform as well as expected for image denoising

# 4. Address this problem (and others) by changing the estimator



### Flexible MRF Model



- Fields-of-Experts (FoE) framework [Roth & Black '05, '09]
- Subsumes popular pairwise & high-order MRFs Expert function N $= \frac{\mathbf{I}}{Z(\mathbf{\Theta})} e^{-\epsilon \|\mathbf{x}\|^2/2}$  $\int \phi \left( \mathbf{J}_{i}^{\mathrm{T}} \mathbf{x}_{(c)}; \boldsymbol{\alpha}_{i} \right)$  $c \in \mathcal{C} i = 1$ Image Linear filter Parameters e.g.  $\mathbf{\Theta} = \{\mathbf{J}_i, \boldsymbol{\alpha}_i\}$ Vector of nodes  $i = 1, \ldots, N$ in clique c



#### Flexible MRF Model



Fields-of-Experts (FoE) framework [Roth & Black '05, '09]





## Sampling from the MRF



- Obtain joint distribution:
  - Product of GSMs = GSM
  - Augment MRF with auxiliary variables z for the mixture components and do not marginalize them out



- Gibbs sampling from the joint distribution  $p(\mathbf{x}, \mathbf{z}; \boldsymbol{\Theta})$  [Geman & Yang '95; Welling et al. '02]
  - Alternate block sampling from  $p(\mathbf{x}|\mathbf{z};\mathbf{\Theta})$  and  $p(\mathbf{z}|\mathbf{x};\mathbf{\Theta})$
  - The  $\mathbf{z}$  can be discarded in the end
  - Least-squares method for sampling  $p(\mathbf{x}|\mathbf{z}; \mathbf{\Theta})$  [Weiss '05, Levi '09]



#### **MRF Sampling – Example**









#### **Generative Properties of Pairwise MRFs**







#### **Generative Properties of High-order MRFs**

- Common FoE models
  - Evaluate filter statistics of model filters  $\mathbf{J}_i$
- Apparent contradiction:
  - Poor generative properties
  - Good application performance

Why?





#### Learning Better Generative MRFs



- Learn shapes of flexible GSM experts and linear filters J<sub>i</sub> (for high-order model)
  - Use efficient sampler
  - Otherwise training similar to [Roth & Black '09]
- Learned models:
  - 1. Pairwise MRF with single GSM potential (fixed first-derivative filters)



 FoE with 3×3 cliques and 8 GSM experts (including filters)







#### **Generative Properties of Our Pairwise MRF**





#### **Our Learned FoE in Comparison**







### **Generative Properties of our FoE**



- Filter statistics of our learned 3×3 FoE
  - Much better than previous models
  - Room for improvement





#### Image Denoising



- Image denoising assuming i.i.d. Gaussian noise with known standard deviation  $\sigma$ 





#### Image Denoising – MAP



- Recent works point to deficiencies of MAP [Nikolova '07, Woodford et al. '09]
- We find only modest correlation between:
  - Image quality of the MAP estimate
  - Generative quality of the MRF

Better generative properties  $\checkmark$  Better application performance



### Image Denoising – MMSE



Samples

 We propose to use Bayesian minimum mean squared error estimation (MMSE)

$$\hat{\mathbf{x}} = \arg\min_{\tilde{\mathbf{x}}} \int ||\tilde{\mathbf{x}} - \mathbf{x}||^2 p(\mathbf{x}|\mathbf{y}; \mathbf{\Theta}) \, \mathrm{d}\mathbf{x} = E[\mathbf{x}|\mathbf{y}]$$

- [Levi '09] extended sampler to the posterior
  - Only used a single sample in applications
- We approximate the MMSE estimate
  - Average samples from the posterior
- We find high correlation between:
  - Image quality of the MMSE estimate
  - Generative quality of the MRF



MMSE



#### Image Denoising – Results



 Compared the MMSE estimate for our learned models with other popular methods

Average PSNR (dB) for 68 test images ( $\sigma$  = 25)







- Denoising performance highly correlated with the generative quality of the model
- No regularization weight  $\lambda$  required to perform well
- Denoised image does not exhibit incorrect statistics







- Denoising performance highly correlated with the generative quality of the model
- No regularization weight  $\lambda$  required to perform well
- Denoised image does not exhibit incorrect statistics







- Denoising performance highly correlated with the generative quality of the model
- No regularization weight  $\lambda$  required to perform well
- Denoised image does not exhibit incorrect statistics







- Denoising performance highly correlated with the generative quality of the model
- No regularization weight  $\lambda$  required to perform well
- Denoised image does not exhibit incorrect statistics
  - No piecewise constant regions
  - Works with standard MRFs







### Summary



- Evaluated MRFs through their generative properties
  - Based on a flexible framework with an efficient sampler
- Common image priors are surprisingly poor generative models
- Learned better generative MRFs (pairwise & high-order)
  - Potentials more peaked
- Sampling makes MMSE estimation practical
  - Several advantages over MAP
  - Excellent results from generative, application-neutral models



#### Thanks!



#### Acknowledgments:

#### Yair Weiss, Arjan Kuijper, Michael Goesele, Kegan Samuel, Marshall Tappen

#### Please come to our poster!

Code and models available soon at <a href="http://bit.ly/mmse-mrf">http://bit.ly/mmse-mrf</a>









