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Abstract

Conventional non-blind image deblurring algorithms
involve natural image priors and maximum a-posteriori
(MAP) estimation. As a consequence of MAP estimation,
separate pre-processing steps such as noise estimation and
training of the regularization parameter are necessary to
avoid user interaction. Moreover, MAP estimates involving
standard natural image priors have been found lacking in
terms of restoration performance. To address these issues
we introduce an integrated Bayesian framework that unifies
non-blind deblurring and noise estimation, thus freeing the
user of tediously pre-determining a noise level. A sampling-
based technique allows to integrate out the unknown noise
level and to perform deblurring using the Bayesian mini-
mum mean squared error estimate (MMSE), which requires
no regularization parameter and yields higher performance
than MAP estimates when combined with a learned high-
order image prior. A quantitative evaluation demonstrates
state-of-the-art results for both non-blind deblurring and
noise estimation.

1. Introduction
Although image blur is sometimes used for artistic pur-

poses, it frequently corrupts valuable image information
and produces visually disturbing images. Deblurring tech-
niques thus attempt to restore a sharp explanation from a
blurred input image. This paper is concerned with non-blind
deblurring, where the blur is assumed to be known, which is
an important component of the more general blind deblur-
ring problem [14]. Even when the image blur is known, for
example from inertial sensors [8], deblurring is a difficult
problem, partly rooted in the loss of high spatial frequencies
due to the blur. This is further exacerbated by image noise,
which arises from the image capturing process. The sim-
plest conceivable approach of deblurring by inverting the
blur matrix cannot effectively overcome these difficulties.

Instead, most techniques rely on natural image priors
based on Markov random fields (MRFs) to regularize the
problem and to avoid restoration artifacts. The restored
image is coupled to the blurred input through a likelihood
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model, which requires the image noise level to be known.
To compute the deblurred image, most approaches rely on
MAP estimation [11, 13]. However, such MAP approaches
have various shortcomings: (1) The noise level must be
given by the user or estimated in a separate process prior
to deblurring. This is problematic, since the performance
can be sensitive to the choice of noise level (see Fig. 1).
Moreover, conventional noise estimation techniques are not
necessarily designed for blurred images. (2) For best re-
sults, the influence of prior and likelihood needs to be cali-
brated with a regularization parameter. This parameter de-
pends on the noise magnitude; therefore, a set of suitable
regularization parameters must be determined in an off-line
training step for a necessarily limited set of noise levels. (3)
Finally, MAP estimates have been found to either exhibit
oversmoothing or residual high-frequency artifacts [3, 22].

In this paper, we propose a non-blind deblurring algo-
rithm that extends the conventional Bayesian approach with
integrated noise estimation. In particular, we treat the noise
level as a nuisance parameter that is integrated out using a
sampling-based algorithm. As a consequence of unifying
noise estimation and image restoration, manual noise selec-
tion or a separate pre-processing step are no longer needed.
Moreover, we replace MAP with MMSE estimation based
on Gibbs sampling [22], which reduces oversmoothing and
allows to eliminate the regularization parameter when com-
bined with an appropriate image prior. Finally, we employ a
learned high-order MRF prior [20] for regularization, which
as far as we are aware is the first time learned priors have
been used for image deblurring.

We perform a number of quantitative experiments to
evaluate both the noise estimation component itself, as well
as the integrated deblurring approach; in both cases we find
favorable performance. In particular, our non-blind deblur-
ring approach with integrated noise estimation outperforms
state-of-the-art deblurring methods for which the noise level
is estimated with a separate procedure [30]. In addition,
our method outperforms previous ones even when those
are supplied with the (usually unknown) ground truth noise
level. Finally, we report results for the special case of blind
image denoising, for which we obtain results very close to
the non-blind case.
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2. Related Work
The practical significance of non-blind deblurring not

only includes applications with known blur kernel [e.g. 13],
but also stems from the design of state-of-the-art blind de-
blurring algorithms. Levin et al. [14] theoretically and prac-
tically demonstrate the stability of first estimating the kernel
from a marginalized density, and then inferring a sharp im-
age by non-blind deblurring with the kernel estimate. Al-
though some algorithms differ from this and alternate be-
tween kernel and latent image estimation [e.g. 23], non-
blind deblurring forms an important element of not only
state-of-the-art image-based blind methods [2, 6, 9, 23, 27],
but also of highly competitive hardware-based techniques
[1, 8, 24].

A classical approach to non-blind deblurring is the Lucy-
Richardson method [16, 19], which is known to cause ring-
ing artifacts, but frequently is used as a baseline [11, 23].
Ringing can be reduced if a pair of blurred and noisy im-
ages is available [27]. More recent deblurring approaches
involve natural image priors and MAP estimation. Krish-
nan and Fergus [11] propose a fast MAP algorithm with a
first-order prior by exploiting a half-quadratic scheme [7].
Shan et al. [23] use a likelihood model based on derivatives
of up to second order and a two-level prior. Levin et al. [13]
propose a MAP algorithm with a high-order prior involv-
ing second-order derivative filters. This method has found
widespread use due to its leading performance [2, 8, 14], or
is often compared to experimentally [11, 23].

As discussed above, MAP approaches to deblurring have
a number of disadvantages. On one hand, MAP estimates
have been found to yield either oversmoothed results lack-
ing textural detail, or results with high-frequency artifacts.
Cho et al. [3] address this issue with a content-aware prior,
which adapts the image model locally to the properties of
the respective image region. Schmidt et al. [22] replace
MAP with MMSE estimation, and show improved results
for image denoising. We here follow the approach of [22]
and generalize it to non-blind deblurring. Additionally, the
sampling framework allows to integrate noise estimation in
a rather natural way.

On the other hand, MAP approaches require the noise
level and/or regularization parameter to be known or esti-
mated separately. This has been addressed using variational
Bayesian techniques that approximate the posterior by a
simpler, analytically tractable density. One can thus com-
pute marginal expectations of the hidden variables, includ-
ing the noise level, under the approximative distribution.
Miskin and MacKay [17] propose a variational Bayesian
framework for blind deconvolution with integrated noise
estimation, but assume that pixels are i. i. d., which leads
to sub-par deblurring results. Fergus et al. [6] incorporate
a similar automatic noise estimate into kernel estimation,
but do so for noise on the image gradients instead of image
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Figure 1. Dependence of deblurring results on the noise level.
Average results for 8 images and various assumed noise levels
(ground truth σGT = 2.55). All methods suffer from an incor-
rect choice of σ. Especially for MAP-based approaches the best
performance is achieved for σ < σGT. The trained regularization
parameter is thus not fully representative of the test set.

noise. Moreover, [6] use a simple gradient prior. In contrast,
our non-blind deblurring algorithm based on sampling nat-
urally extends to high-order priors, and allows to formulate
and estimate sensor noise in the spatial domain.

The issue of estimating regularization parameters ex-
tends well beyond deblurring. In stereo, Zhang and
Seitz [28] address this by performing joint MAP estima-
tion of the disparity and the MRF parameters. In optical
flow, Krajsek and Mester [10] marginalize over the flow
field based on a Laplace approximation in order to obtain
a maximum marginal likelihood estimate for the model pa-
rameters. Our approach, in contrast, does not require ap-
proximations of the posterior.

Since many image restoration approaches involve noise-
dependent tuning parameters, much effort has gone into au-
tomatic noise estimation. For a single color image, Liu et
al. [15] infer the noise level in RGB channels using a piece-
wise smooth image model. For gray-level images, Zoran
and Weiss [30] estimate the noise standard deviation by
modeling a link between kurtosis values and image noise.
The wavelet-based approach of De Stefano et al. [4] follows
similar ideas. The widely used MAD framework [5, 29] in-
fers a noise estimate from the wavelet coefficients of the
highest-frequency subband. We note that most noise es-
timation procedures do not explicitly consider the special
case of noise inference on blurred images. One exception
is [30], which at least reports experimental results for this
case. The advantage of our integrated noise estimation ap-
proach is that it is directly applicable to deblurring.

3. Deblurring with High-order Priors

As is usual in the deblurring literature, we assume that
the unknown sharp image x ∈ Rm is blurred with a blur
matrix K ∈ Rn×m and corrupted with additive white Gaus-
sian noise n:

y = Kx+ n, n ∼ N (0, σ2I). (1)

2626



Here, y ∈ Rn is the observed, blurred image. We note that
all subsequent derivations also hold for the case of spatially
varying, non-uniform blur. However, since there is little
ground-truth data available for spatially varying blur, our
experiments are limited to spatially uniform blur. In other
terms, we usually assume that Kx ≡ k⊗ x corresponds to
a convolution of the desired image x with the blur kernel k.

In this paper, we consider the problem of non-blind im-
age deblurring with a known blur matrix K. Taking a
Bayesian approach thus amounts to formulating the poste-
rior

p(x|y,K, σ) ∝ p(y|x,K, σ) · p(x). (2)

The assumption of additive white Gaussian noise gives rise
to the likelihood

p(y|x,K, σ) = N (y;Kx, σ2I). (3)

The term p(x) denotes a natural image prior. This prior is
necessary, since simply inverting the blur matrix K to re-
cover the original image x is infeasible due to the presence
of noise or a misspecified blur kernel. Hence, recent deblur-
ring techniques employ sparse image priors to regularize the
solution to this ill-posed problem [e.g. 11, 13].

High-order MRF prior. Instead of hand-defined, fre-
quently gradient-based priors prevalent in deblurring, we
here rely on a learned high-order prior, specifically Fields
of Experts (FoEs) [20]. These high-order MRFs are based
on spatially extended cliques, and capture the properties of
a natural image x in terms of responses to a bank of learned,
linear filters:

p(x) =
1

Z
e−ε‖x‖

2/2
∏
c∈C

N∏
i=1

φ
(
JT
i x(c);αi

)
(4)

Here, the response to the learned, linear filters Ji is modeled
as the product of expert functions φ with parameters αi,
which are learned as well. Moreover, the MRF cliques are
denoted as c ∈ C, and Z denotes the partition function. The
broad Gaussian factor e−ε‖x‖

2/2 ensures that the model is
normalizable.

Instead of the originally proposed Student-t experts [20],
we follow [22] and model the expert functions using Gaus-
sian scale mixtures (GSMs) [25] as

φ(JT
i x(c);αi) =

∑J

j=1
αijN (JT

i x(c); 0, η
2
ij). (5)

Apart from being a more faithful model of natural images,
this formulation admits efficient Gibbs sampling-based in-
ference [12], which we later exploit for our integrated noise
estimation approach. To that end, the FoE density from
Eq. (4) can be augmented with discrete latent variables z
to yield the joint distribution

p(x, z) ∝ e−ε‖x‖
2/2
∏
c∈C

N∏
i=1

αizicN (JT
i x(c); 0, η

2
izic), (6)

from which the FoE model in Eq. (4) arises by marginaliz-
ing over the latent variables z.

The advantage of the augmented distribution p(x, z) is
that the conditional distributions are tractable. Specifically,
p(x|z) is a multivariate Gaussian and p(z|x) is a discrete
distribution [cf . 22].

4. Bayesian Deblurring using Sampling
To infer the deblurred image from the posterior in

Eq. (2), we extend the approach of [22] and in con-
trast to previous deblurring methods compute the posterior
mean, or Bayesian minimum mean squared error estimate
(MMSE):

x̂ = argmin
x̃

∫
‖x̃− x‖2p(x|y,K, σ) dx = E[x|y,K, σ].

(7)
The advantage over the more common MAP approach, at

least for image denoising [22], is that that it leads to superior
results, both for smooth and textured image regions. Sec-
ondly, MMSE estimates yield a higher correlation between
the image restoration performance and the generative qual-
ity of the model. This on one hand lets us take advantage of
powerful learned priors, and on the other hand allows us to
work without any regularization parameter that balances the
prior and the likelihood, which is very desirable especially
when the noise level is not known.

We perform MMSE estimation by extending the sam-
pling approach of [22] to image deblurring. To that end, we
note that the posterior can be augmented with discrete latent
variables z:

p(x, z|y,K, σ) ∝ p(y|x,K, σ) · p(x, z). (8)

Due to the Gaussian form of the likelihood from Eq. (3) we
obtain the conditional distributions

p(z|x,y,K, σ) ∝
∏
c∈C

N∏
i=1

αizicN (JT
i x(c); 0, η

2
izic) (9)

p(x|z,y,K, σ) ∝ N (y;Kx, σ2I) · N (x;0,P−1
z ). (10)

Note that the conditional p(z|x,y,K, σ) = p(z|x) is not af-
fected by the likelihood term and hence is the same as in the
denoising case [22]. Sampling from Eq. (9) is easy, because
the distribution decomposes and each zic can be sampled
independently from a univariate discrete distribution.

The conditional distribution p(x|z,y,K, σ), on the other
hand, is a generalization of the denoising case (where K =
I). Eq. (10) is a Gaussian in x with precision (inverse co-
variance) matrix Qz = Pz+

1
σ2K

TK and mean Q−1
z KT y

σ2 ,
and can be sampled by solving two large sparse systems of
linear equations [12]. The matrix Pz is the same as in de-
noising and depends on the linear filters Ji and the current
value of the auxiliary variables z [see 22].
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Sampling from the posterior (Eq. (2)) thus proceeds
using a Gibbs sampler that alternates between sampling
from Eqs. (9) and (10) to obtain a sequence of samples
{{z(1),x(1)}, . . . , {z(T ),x(T )}}. The MMSE estimate of
x is approximated by averaging samples x(t) from the pos-
terior after B burn-in iterations (B < t ≤ T ); the samples
of z are simply discarded at the end. Alternatively, we can
use a Rao-Blackwellized MMSE estimator of x by averag-
ing the conditional expectations from Eq. (10) [cf . 18]:

x̂RB ≈
1

T −B
∑T

t=B+1
Q−1

z(t)K
T y

σ2
. (11)

We find that essentially the same performance can be
achieved using either estimator, although many fewer itera-
tions of the Gibbs sampler are necessary to satisfy our con-
servative convergence criteria (similar to [22]) when using
Rao-Blackwellization. Hence, all results in the remainder
of the paper were obtained using this approach.

5. Integrated Noise Estimation
Most MAP-based approaches in low-level vision rely on

the choice of a regularization parameter λ that calibrates
the influence of prior and likelihood on the posterior. This
parameter is dependent on the noise level and must in prac-
tice be determined in an off-line training step. Nonetheless,
even after training the regularization parameter, the MAP
framework still requires the user to provide a noise level
estimate, which can significantly affect the application per-
formance when selected incorrectly. Fig. 1 shows how the
image deblurring performance depends on the chosen noise
level for a selection of deblurring methods, and illustrates
that a reliable noise estimate is crucial for optimum deblur-
ring performance. One of the properties of the MMSE-
based deblurring approach proposed in Sec. 4 is that it does
not require an off-line training of a regularization parame-
ter. In contrast, all other approaches shown in Fig. 1 require
such a procedure.

In the following, we further extend the framework of
Sec. 4 by integrating noise estimation. Specifically, we
adopt a Bayesian approach and treat σ as a nuisance pa-
rameter, which we (approximately) integrate out:

p(x|y,K) =

∫
p(x, σ|y,K) dσ. (12)

To that end we incorporate the noise σ as a new variable
in an extended joint distribution p(x, z, σ|y,K). Since
the input image and the blur kernel provide sufficient con-
straints in practice, we assume a uniform prior on σ, i.e.
p(σ) = const. To estimate the integral from Eq. (12), we ex-
tend the Gibbs sampler from Sec. 4 by another step for sam-
pling the conditional distribution p(σ|x, z,y,K), which is
a Gamma distribution G(x; a, b) = xa−1e−x/b

ba Γ(a) on the inverse

noise variance [6]:

p(σ|x, z,y,K) ∝ N (y;Kx, σ2I) (13)

∝ σ−n exp
(
−‖y −Kx‖2

2σ2

)
(14)

∝ G
(

1

σ2
;
n

2
+ 1,

2

‖y −Kx‖2

)
. (15)

Gibbs sampling proceeds by sampling σ, z and x alternat-
ingly. Hence, we can obtain an MMSE estimate of the de-
blurred image x without knowledge of the noise level as

x̂ = argmin
x̃

∫∫
‖x̃−x‖2p(x, σ|y,K) dx dσ = E[x|y,K].

(16)
In practice, we employ Eq. (11) for this purpose, but replace
σ with the current sample σ(t).

If we are not interested in the deblurred image, but rather
in an MMSE estimate of the noise level σ itself, we can
compute

σ̂ = argmin
σ̃

∫∫
‖σ̃−σ‖2p(x, σ|y,K) dx dσ = E[σ|y,K]

(17)
by averaging the samples of σ. Alternatively, we can also
apply Rao-Blackwellization here; based on the conditional
expectations of Eq. (15), we obtain the Rao-Blackwellized
MMSE estimate of σ as

σ̂RB ≈
1

T −B
∑T

t=B+1

(
n+ 2

‖y −Kx(t−1)‖2

)−1/2

.

(18)
In contrast to the estimation framework of Fergus et al.

[6], our sampling-based method allows to naturally incor-
porate a high-order image prior and model sensor noise in
the spatial domain. Moreover, the fundamental difference to
standard MAP approaches is that our noise estimation pro-
cess is a fully automatic, built-in procedure of the deblur-
ring algorithm, which arises naturally by treating the noise
standard deviation as a variable of the posterior. This has the
advantage that the noise estimation procedure is specialized
to the image restoration problem at hand, here deblurring.

We would also like to point out the degenerate case of
identity blur K = I, in which case samples drawn from
p(x, z, σ|y,K) can effectively be used for blind denoising
with simultaneous noise estimation. We evaluated this in
Sec. 6 and found that despite unknown noise level, the re-
sults differ negligibly on average from the non-blind case.

6. Experiments
We evaluate our approach in the context of four differ-

ent tasks: non-blind deblurring (with integrated and without
noise estimation), blind image denoising, and noise estima-
tion in denoising as well as in deblurring applications1. To

1MATLAB code is available on the authors’ webpages.
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Figure 2. Sorted PSNR differences for the 64 deblurred images between our method (3 × 3 FoE) and all others. Noise estimates (using
the method of Zoran and Weiss [30]) instead of the ground truth σ were used for the other approaches. Everything below the black dashed
line means that our method (3× 3 FoE) was better than the competing one. Best viewed in color.

PSNR (dB) SSIM
σ = 2.55 σ = 7.65 σ = 12.75 σ = 2.55 σ = 7.65 σ = 12.75

GT NE GT NE GT NE GT NE GT NE GT NE
Lucy-Richardson [16, 19] 25.38 25.34 21.85 21.88 19.83 19.86 0.703 0.697 0.423 0.425 0.244 0.245
Krishnan & Fergus [11] 26.97 26.86 24.91 24.88 23.93 23.94 0.800 0.793 0.671 0.669 0.608 0.605
Levin et al. [13] 28.03 27.96 25.36 25.36 24.29 24.34 0.823 0.817 0.689 0.686 0.625 0.624
5× 5 FoE (MAP) [20] 28.44 28.33 25.66 25.59 24.48 24.43 0.842 0.835 0.711 0.708 0.646 0.642
Ours (pairwise MRF) 28.24 28.17 25.63 25.58 24.51 24.48 0.833 0.830 0.700 0.696 0.633 0.629
Ours (3× 3 FoE) 28.66 28.61 25.68 25.64 24.46 24.43 0.850 0.846 0.711 0.707 0.640 0.637

Table 2. Average deblurring results for 64 test images. GT denotes that the ground truth noise parameter σ was used, NE indicates that
σ was assumed to be unknown and an estimate was used instead. For all methods except ours, the approach of Zoran and Weiss [30] was
used for noise estimation prior to deblurring. We handle the unknown noise parameter as described in Sec. 5.

Estimate σ̂ PSNR SSIM
avg. 〈ε〉 avg. dB avg.

5× 5 FoE (MAP) [20] GT — 27.44 0.746
5× 5 FoE (MAP) [21] GT — 27.86 0.776
Pairwise MRF (MMSE) [22] GT — 27.54 0.758
3× 3 FoE (MMSE) [22] GT — 27.95 0.788
Zoran & Weiss [30] 23.16 8.8% — —
Ours (pairwise MRF) 22.81 10.1% 27.16 0.733
Ours (3× 3 FoE) 24.20 5.8% 27.88 0.783

Table 1. Average denoising results and noise estimates σ̂ for
68 test images and σ = 25 (partly reproduced from [22]). The
average relative estimation error is denoted by 〈ε〉 =

∑M
m=1|σ̂m−

σ|/(Mσ); GT denotes that the ground truth value for σ was used.

separate the contribution of our general approach from the
effects of the learned, high-order prior, we also report re-
sults for a learned pairwise MRF. If unspecified, the exper-
imental discussion below refers to using the 3 × 3 FoE. To
facilitate comparisons, we use the parameters of the learned
pairwise MRF and 3× 3 FoE models from [22].

Blind denoising with noise estimation. We begin by high-
lighting the special case of no blur, i.e. the blur matrix
K equals the identity matrix – this corresponds to image
denoising. This case is interesting, since our method en-
ables us to perform blind denoising (unknown σ) with inte-
grated noise estimation. Based on the approach described in
Secs. 4 and 5 (with K = I), we performed a series of exper-
iments on 68 images used in [20]. The results are summa-
rized in Tab. 1 using the common peak signal-to-noise ra-

tio (PSNR) and the structural similarity index (SSIM) [26].
Most importantly, we find that despite unknown noise level
our average results are only slightly worse than the non-
blind denoising results with a 3 × 3 FoE reported in [22]
(27.88dB vs. 27.95dB). Nonetheless, the performance on
individual images can significantly differ. Moreover, if we
use our approach to perform MMSE-based noise estima-
tion, we obtain results that are superior to those of Zoran
and Weiss [30]. This is an interesting result due to the con-
ceptual simplicity of our approach: It is solely guided by a
noise model and a natural image prior.

The performance in case of a pairwise MRF drops be-
hind the non-blind setting more significantly (∼ 0.4dB
worse). Moreover, noise estimates are also slightly inferior
to [30] in this case. It is interesting to note that we observe
neither effect in case of deblurring (see below). Finally,
Tab. 1 also shows that our MMSE-based approach with in-
tegrated noise estimation outperforms the MAP-based ap-
proaches with 5 × 5 FoEs of [20] and [21] despite the fact
that they rely on knowledge of the noise parameter σ.

Non-blind deblurring. A general problem with evaluating
non-blind deblurring algorithms is the scarcity of ground-
truth data or even realistic blur kernels. We thus use the
eight publicly available blur kernels from [14] on eight dif-
ferent images of size 128×128 pixels each, to synthetically
blur 64 images overall; the images were randomly cropped
from the same test set as used for blind denoising. Af-
ter blurring the images, we added white Gaussian noise of
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Figure 3. Relative estimation errors |σ̂ − σ|/σ for the 64 blurred test images and three noise levels, comparing our method with Zoran
and Weiss [30]. Each curve is sorted separately and does not indicate a performance comparison between the methods for a given image.

σ = 2.55 σ = 7.65 σ = 12.75
avg. std. dev. 〈ε〉 avg. std. dev. 〈ε〉 avg. std. dev. 〈ε〉

Zoran & Weiss [30] 2.52 0.27 8.21% 7.44 0.50 5.34% 12.41 0.80 5.18%
Ours (pairwise MRF) 2.55 0.12 4.02% 7.68 0.23 2.26% 12.82 0.38 2.01%
Ours (3× 3 FoE) 2.64 0.14 4.28% 7.79 0.23 2.56% 12.87 0.35 1.95%

Table 3. Noise estimation results for the 64 blurred test images and three noise levels, comparing our method with Zoran and Weiss [30].
The average relative estimation error is denoted by 〈ε〉 =

∑M
m=1|σ̂m − σ|/(Mσ).

varying strength to obtain three test sets for noise levels 1%,
3%, and 5% (σ = 2.55, 7.65, 12.75). To simulate realistic
conditions, all pixel values were subsequently rounded to
one of 256 discrete intensities. Additionally, we deblurred
with a slightly perturbed version of the true blur kernel by
adding white Gaussian noise with variance 10−6 to it. The
motivation is to mimic a more realistic scenario where the
estimated blur kernel always contains some error.

We compare our method against the recent MAP-based
approaches of Levin et al. [13] and Krishnan and Fer-
gus [11], as well as the classical Lucy-Richardson algo-
rithm [16, 19]. Both [11, 13] use image priors with hyper-
Laplacian potential functions e−ρ(x) with ρ(x) = |x|α. We
used the original implementation of [13] unchanged with
α = 4/5, and chose α = 2/3 for the original implemen-
tation of [11] to achieve best performance. In addition, we
also applied the 5× 5 FoE prior from [20] to the non-blind
deblurring case, and used an EM algorithm [see 12] to per-
form MAP estimation.

For all competing methods, the regularization parame-
ters were determined (per noise level) on a separate training
set of 16 images, using each of the eight blur kernels from
[14] twice. In order to better compare the results with our
method, which does not rely on knowing the noise level,
we also obtained noise estimates with the approach of [30]
and used those estimates instead of the ground truth noise
value for the competing methods. For completeness, we
also report results for our method with known noise level,
which show that integrated noise estimation performs al-
most identically to deblurring with the (usually unknown)
ground truth noise level.

The quantitative deblurring results for the 64 images and
three noise levels are summarized in Tab. 2. Fig. 2 visually
illustrates the performance difference of our approach to
various baselines. The results show that Lucy-Richardson

[16, 19] and the very fast method of Krishnan and Fergus
[11] are far behind the other methods for all noise levels,
particularly behind ours (at least 0.5dB worse on average).
We find that our method particularly outperforms compet-
ing approaches for the smallest – and for many applications
likely the most realistic – noise level. For example, the
widely used method of Levin et al. [13] is outperformed by
about 0.6dB. An interesting observation is also that deblur-
ring with the 5 × 5 FoE prior from [20] outperforms [13],
which as far as we are aware has not been observed be-
fore. This shows that the learned, high-order MRF prior is
at least partly responsible for the observed performance dif-
ference to [13]. Nonetheless, our Bayesian approach with
integrated noise estimation still performs about 0.25dB bet-
ter than using a 5 × 5 FoE with MAP estimation, despite
using smaller 3 × 3 cliques. Interestingly, even when com-
bined with a simple pairwise MRF our method comes close
in performance to the 5× 5 FoE. This demonstrates that the
proposed MMSE approach substantially improves perfor-
mance, while offering an integrated noise estimation proce-
dure and not requiring a regularization parameter.

A qualitative comparison on two larger images that were
not part of the test set can be seen in Figs. 4 and 5. We
observe in both images that our method is especially good
at preserving textural detail, while at the same time allowing
for very smooth regions, which visually appear too crisp or
show artifacts in case of the competing methods (e.g. the
sky in Fig. 4 or the background near the top of Fig. 5).

Noise estimation for deblurring. We finally evaluated the
noise estimation performance itself by comparing with the
approach of Zoran and Weiss [30], which is one of the most
competitive techniques in this area. We report results for
64 blurred images and three noise levels in Tab. 3; a visual
comparison is given in Fig. 3. We find that our estimates
are significantly better than those of [30] in terms of the
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average relative estimation error. This holds for the pairwise
MRF and high-order FoE model as well as all noise levels,
particularly the large ones, and demonstrates the advantage
of having a noise estimation procedure that is specifically
adapted to the problem of image deblurring.

Computational considerations. Unsurprisingly, the
Bayesian approach taken here is computationally more ex-
pensive than MAP estimation (energy minimization). The
reported results are intended to show the performance limits
of our method and consequently use conservative thresholds
for assessing sampler convergence. For practical purposes
it is easily possible to relax the convergence criteria with
little to no influence on the deblurring performance. For the
64 test images in Tab. 2 and σ = 2.55/7.65/12.75, a sim-
ple MATLAB implementation achieves an average runtime
of 4.6/3.9/3.9 minutes, while staying within 0.03dB of the
quoted results. A similar MAP implementation used for the
5 × 5 FoE [20] is only about 4 times faster. The methods
of [11] and [13] are optimized for speed and need at most a
few seconds per image. While much faster, their deblurring
performance is significantly worse (1.7dB and 0.6dB). Fur-
thermore, they require additional effort for noise estimation
and determining suitable regularization parameters.

7. Conclusions and Future Work

Based on posterior sampling, we presented an integrated
Bayesian framework for unified non-blind deblurring and
noise estimation. By relying on MMSE estimation and
marginalizing out the noise parameter, we not only free
the user from tedious parameter tuning, but also achieve
improved application performance by exploiting learned,
high-order priors. In an extensive experimental evaluation,
our framework was demonstrated to outperform state-of-
the-art MAP deblurring and noise estimation algorithms us-
ing standard quantitative measures.

To cope with the computational cost of Bayesian infer-
ence, future work should consider more efficient sampling
algorithms. Moreover, since our integrated noise estimation
approach in principle extends to other problems, such as
super-resolution, future work may consider exploring fur-
ther applications of the proposed framework. In general,
it may be possible to estimate additional parameters of the
problem at hand; for deblurring in particular, estimating the
blur kernel in an integrated fashion would extend our frame-
work to the problem of blind deblurring (assuming spatially
uniform blur). Finally, future work should also be devoted
to gathering ground-truth data for spatially varying blur and
evaluating our and other approaches on this task.
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suggesting Rao-Blackwellized MMSE estimation.
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(a) Original (b) Blurred
PSNR = 23.89dB, SSIM = 0.588

(c) Ours (3× 3 FoE)
PSNR = 29.05dB, SSIM = 0.864

(d) Ours (pairwise MRF)
PSNR = 28.84dB, SSIM = 0.842

(e) 5× 5 FoE (MAP) [20]
PSNR = 28.81dB, SSIM = 0.844

(f) Levin et al. [13]
PSNR = 28.54dB, SSIM = 0.826

(g) Krishnan & Fergus [11]
PSNR = 28.36dB, SSIM = 0.825

(h) Lucy-Richardson [16, 19]
PSNR = 27.01dB, SSIM = 0.693

Figure 4. Deblurring example (cropped). Visual comparison of non-blind methods, where the ground truth noise level was used for all
approaches except ours. Our method simultaneously preserves rock texture and smooth sky. The 15 × 15 blur kernel shown in (b) is
spatially resized and its entries are scaled for better visualization. Best viewed on screen.

(a) Original (b) Blurred
PSNR = 19.24dB, SSIM = 0.480

(c) Ours (3× 3 FoE)
PSNR = 32.09dB, SSIM = 0.920

(d) Ours (pairwise MRF)
PSNR = 30.31dB, SSIM = 0.878

(e) 5× 5 FoE (MAP) [20]
PSNR = 31.71dB, SSIM = 0.914

(f) Levin et al. [13]
PSNR = 31.33dB, SSIM = 0.898

(g) Krishnan & Fergus [11]
PSNR = 28.30dB, SSIM = 0.873

(h) Lucy-Richardson [16, 19]
PSNR = 26.23dB, SSIM = 0.708

Figure 5. Deblurring example (cropped). Visual comparison of non-blind methods, where the ground truth noise level was used used for
all approaches except ours. The blur exhibits sparseness typical to camera shake. Our method simultaneously preserves clothing texture
and smooth background regions. The 23× 23 blur kernel shown in (b) is spatially resized and its entries are scaled for better visualization.
Best viewed on screen.
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