
10 20 30 40 50 60
0

0.1

0.2

R
e

l. 
e

rr
o

r

 

 

Zoran & Weiss

Ours (3×3 FoE)
Ours (pairwise MRF)

Problem
• Noise level of corrupted image not known in practice
→ mostly assumed to be known anyway

• Accurate noise level important for image restoration
→ noise estimation from corrupted (i.e. blurred)

image difficult
• Here: non-blind deblurring
→ image blur is known or estimated beforehand
→ important component of blind deblurring [3]

Approach
• Sampling-based Bayesian inference with learned image prior
→ allows to treat the noise level as nuisance parameter and integrate it out,

no preceding noise estimation necessary
→ enables MMSE/BLS estimation for improved restoration

performance with learned high-order MRF prior [8]
→ additional benefit: integrating over images also

allows to obtain noise estimate
→ noise estimation specialized to deblurring

and only based on natural image prior
• No parameters to tune

(e.g., no noise-dependent regularization weights)
• Special case: blind denoising with noise estimation
• Applicable to non-uniform blur

Results
• State-of-the-art performance (deblurring and noise estimation)
• Performance difference on average negligible to the case where noise level is known
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Bayesian Deblurring with Integrated Noise Estimation
Uwe Schmidt  •  Kevin Schelten  •  Stefan Roth             Department of Computer Science, TU Darmstadt, Germany

Image Blur & Our Deblurring Approach

Input:
Blurred image y

+⊗=

Desired:
Original image x

Gaussian noise with
unknown noise level σ

Bayesian Inference with Integrated Noise Estimation Experiments
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Blurred, PSNR = 23.89dB Ours (3×3 FoE), PSNR = 29.05dB Ours (pairwise MRF), PSNR = 28.84dB

5×5 FoE (MAP) [6], PSNR = 28.81dB Levin et al. [2], PSNR = 28.54dB

Qualitative – Preserves textured and smooth regions

Quantitative – State-of-the-art results for non-blind deblurring and 
blind denoising, including noise estimation in both applications

∼ N (0, σ2I)

Noise prior
(here uniform)

Posterior
(image restoration)

Noise level σ is
integrated out

Average image restoration quality (PSNR) and average relative noise estimation error (<ε>)
GT: Using ground truth noise level      NE: Noise level integrated out (ours) or estimated beforehand (with Zoran & Weiss [9])

0. Bayesian approach

1. High-order Markov Random Field (MRF) prior

Code
available at

goo.gl/
tqqsk

• Fields of Experts (FoE) [6] model                                                                            withp(x) =
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• Latent variable representation            with                       , useful for inference

2. MMSE estimation
• Use MMSE instead of prevalent MAP estimate and analyze its aptitude for deblurring
• Extend sampling-based MMSE estimation from denoising [8] (K = I) to deblurring:

Blur matrix K
or kernel k with

K
Assumed known
Kx ≡ k⊗ x
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Original

Lucy-Richardson [5], PSNR = 27.01dBKrishnan & Fergus [1], PSNR = 28.36dB
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Sorted PSNR differences
for the 64 deblurred images 
(σ = 2.55) between our
method (3x3 FoE) and all others.
Below dashed line → ours better

Noise estimation results
for the 64 deblurred images
(σ = 2.55) in terms of average
relative estimation error.
Each curve sorted separately.

Output:
Deblurred image x̂x

(Gaussian scale mixture experts [8])
Discrete indicator variables

• In practice use                                                                       (z eventually marginalized out)

3. Integrating noise estimation
• In contrast to previous work, assume noise level to be unknown in the spatial domain:

p(x, z|y,K,σ) ∝ p(y|x,K,σ) · p(x, z)

• Obtain MMSE estimate by integrating (marginalizing) σ out:

Benefit:
• Can also obtain MMSE estimate of the noise level σ (integrate x out):

�
{x(1), z(1),σ(1)}, . . . , {x(T ), z(T ),σ(T )}

�
∼ p(x, z,σ|y,K)

4. Sampling-based inference
• Approximate MMSE estimate through sequence of samples from the joint posterior:

• Obtain samples of posterior through Gibbs sampling from conditional distributions

•                            decomposes into univariate discrete distributions [8]
•                            is a multivariate Gaussian

•                            is a Gamma distribution:

p(x|z,y,K,σ)
p(z|x,y,K,σ)

p(σ|x, z,y,K)

• MMSE estimate can be approximated by averaging samples after B  burn-in iterations

• Alternatively, use Rao-Blackwellized MMSE estimation [4] (more efficient) by averaging
conditional expectations: Precision of Gaussian

p(x|z,y,K,σ)

p(x, z) p(x) =
�

z

p(x, z)

Bayesian minimum mean squared error (MMSE) / least squares (BLS) estimate
→ integrate over x

Deblurring performance for
various assumed noise levels

(all methods suffer from incorrect value)

Correct value

σ

σ

σ

σ

σ σ

Deblurring 64 test images with noise level σ = 2.55

Deblurring
PSNR (dB)PSNR (dB) Estimate σEstimate σ

Deblurring
GT NE avg. <ε>

Lucy-Richardson [5] 25.38 25.34

Krishnan & Fergus [1] 26.97 26.86

Levin et al. [2] 28.03 27.96

5×5 FoE (MAP) [6] 28.44 28.33

Zoran & Weiss [9] NANA 2.52 8.21%

Ours (pairwise MRF) 28.24 28.17 2.55 4.02%

Ours (3×3 FoE) 28.66 28.61 2.64 4.28%

 NA

NA

σ̂

σ

���

Denoising 68 test images with noise level σ = 25

Denoising
PSNR (dB)PSNR (dB) Estimate σEstimate σ

Denoising
GT NE avg. <ε>

5×5 FoE (MAP) [6] 27.44 —

5×5 FoE (MAP) [7] 27.86 —

Pairwise MRF (MMSE) [8] 27.54 —

3×3 FoE (MMSE) [8] 27.95 —

Zoran & Weiss [9] NANA 23.16 08.8%

Ours (pairwise MRF) — 27.16 22.81 10.1%

Ours (3×3 FoE) — 27.88 24.20 05.8%

 NA

NA

σ̂

σ
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No further
assumptions

necessary


