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Image Blur & Our Deblurring Approach
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Blur matrix K \ prs R e S

or kernel k with Gaussian noise with

Kx=k®x
Assumed known

Input: Desired:
Blurred image y\OriginaI Image X
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X

— —

Noise level o is Posterior Noise prior
integrated out (image restoration) (here uniform)

% — argmin / 1% — x|2 p(xly, K, ) p(oly, K) dxdo

Bayesian minimum mean squared error (MMSE) / least squares (BLS) estimate
— integrate over X

Deblurred image x

Problem Correct value
e Noise level of corrupted image not known in practice ~ o |
— mostly assumed to be known anyway Z \
* Accurate noise level important for image restoration & |
— noise estimation from corrupted (i.e. blurred) " ol | s roe taap) |
image difficult | s Forgus|
e Here: non-blind deblurring 22| —1 =

o

Deblurring performance for
various assumed noise levels
(all methods suffer from incorrect value)

— image blur is known or estimated beforehand
— important component of blind deblurring [3]

Approach
e Sampling-based Bayesian inference with learned image prior

— allows to treat the noise level as nuisance parameter and integrate it out,
no preceding noise estimation necessary

— enables MMSE/BLS estimation for improved restoration
performance with learned high-order MRF prior [8]

— additional benefit: integrating over images also
allows to obtain noise estimate

— noise estimation specialized to deblurring
and only based on natural image prior

e No parameters to tune
(e.g., no noise-dependent regularization weights)

e Special case: blind denoising with noise estimation
e Applicable to non-uniform blur

available at

g00.81/
tqgqsk

Results

e State-of-the-art performance (deblurring and noise estimation)
e Performance difference on average negligible to the case where noise level is known

unknown noise level o

Bayesian Inference with Integrated Noise Estimation

0. Bayesian approach Gaussian likelihood N (y; Kx, 021)
/_/— Natural image prior
p(xly, K,0) x p(y[x, K, o) - p(x)

1. High-order Markov Random Field (MRF) prior
N

1 2
e Fields of Experts (FOE) [6] model p(X) = e elxlT/2 H H gb(J;-TX(C); ai) with

J 4 ceC1=1
DI X(0); ) = Z iz N(J; X(); 0,77, ) (Gaussian scale mixture experts [8])
Discrete indicator variables ﬂ: 1

e Latent variable representation pR‘z) with p(x) = Z p(x, z), useful for inference
Z

2. MMSE estimation

e Use MMSE instead of prevalent MAP estimate and analyze its aptitude for deblurring
e Extend sampling-based MMSE estimation from denoising [8] (K — I) to deblurring:

X = arg mjﬂ/l\i — x|I*p(x|y, K, 0) dx = E[x]y, K, ]
e In practice use p(x,z|y, K, o) x p(y|x, K, o) - p(x, z) (z eventually marginalized out)

3. Integrating noise estimation
® |n contrast to previous work, assume noise level to be unknown in the spatial domain:

p(x,2z,0ly,K) < p(y|x, K, o) - p(x,2) - p(o]y, K)
e Obtain MMSE estimate by integrating (marginalizing) o out:

X = arg mjn/ 1% — x||*p(x, 0ly, K) dxdo = Ex|y, K]

Benefit:
e Can also obtain MMSE estimate of the noise level o (integrate x out): No further
5 assumptions
5 = argmin [ [ 5 = o|*plx. oly. K) dxdo = Eloly, K] recesa
o)

4. Sampling-based inference
e Approximate MMSE estimate through sequence of samples from the joint posterior:

e Obtain samples of posterior through Gibbs sampling from conditional distributions
e p(z|x,y, K, o) decomposes into univariate discrete distributions [8]
e p(x|z,y, K, o) is a multivariate Gaussian ( . 5 )

; ! 17
0% 2 ly — Kx||?
e MMSE estimate can be approximated by averaging samples after B burn-in iterations

e p(olx,z,y,K) is a Gamma distribution: G

e Alternatively, use Rao-Blackwellized MMSE estimation [4] (more efficient) by averaging

conditional expectations: oresision of Gaussian
/ p(x|z.y. K. 0)
Yy

T - T
) 1 ly — Kx(t=1)]2 1
ORB ~ Z \/ XRB ~ Qz_é) K" >
=5 5LV —n+2 T_Bt:zB:—l—l (1))

#pixels of y
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Experiments

Qualitative - Preserves textured and smooth regions

Blurred, PSNR = 23.89dB Ours (3x3 FoE), PSNR = 29.05dB

5x5 FOE (MAP) [6], PSNR = 28.81dB Levin et al. [2], PSNR = 28.54dB

Krishnan & Fergus [1], PSNR = 28.36dB Lucy-Richardson [5], PSNR = 27.01dB

Quantitative - State-of-the-art results for non-blind deblurring and
blind denoising, including noise estimation in both applications

TECHNISCHE
UNIVERSITAT
DARMSTADT

Deblurring PSNR (dB) Estimate 0 Denoising PSNR (dB) Estimate 0
GT | NE | avg. | (e) S GT | NE | avg. | (e)

Lucy-Richardson [5] 05.38 | 25.34 2 3 [5x5 FoE (MAP) [6] 27.44 | —
Krishnan & Fergus [1] 26.97 | 26.86 NA % E 5x5 FoE (MAP) [7] 27.86 — NA
Levin et al. [2] 28.03 | 27.96 g & |Pairwise MRF (MMSE) [8] | 27.54 —
5x5 FOE (MAP) [6] 28.44 | 28.33 g § 3x3 FOE (MMSE) [8] 27.95 | —
Zoran & Weiss [9] NA 252 [8.21% | S S Zoran & Weiss [9] NA 23.16 | 8.8%
Ours (pairwise MRF) 28.24 | 28.17 | 2.55 | 4.02% & |Ours (pairwise MRF) — 27.16 | 22.81 |10.1%
Ours (3x3 FoE) 28.66 | 28.61 | 2.64 |4.28% Ours (3x3 FoE) — 27.88 | 24.20 | 5.8%

Deblurring 64 test images with noise level o= 2.55 Denoising 68 test images with noise level o = 25

Average image restoration quality (PSNR) and average relative noise estimation error ({€))
GT: Using ground truth noise level  NE: Noise level integrated out (ours) or estimated beforehand (with Zoran & Weiss [9])

Sorted PSNR differences Of— == = — ‘ Zoran & Weiss Noise estimation results
for the 64 deblurred images e 2 T 5 0o T 8‘”3 E3><_3 F,OE)MRF) ~~~~~ 1 for the 64 deblurred images
p 5 x 5 FoE (MAP 5 = == QUIS (palrwise .
(0 = 2.55) between our O 4 / Do e‘t’al_( ) 2 i (0= 2.55) in terms of average
. O] . . .
method (3x3 FoE) and all others. = -6 / Krishnan & Fergus 1 o 0.1 relative estimation error.
. Lucy—Richardson
Below dashed line — ours better -8 Ours (pairwise MRF) || Each curve sorted separately.
— - - - - . . 0 n L " . .
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