Bayesian Deblurring with **Integrated Noise Estimation** Uwe Schmidt • Kevin Schelten • Stefan Roth

Image Blur & Our Deblurring Approach -

Bayesian Inference with Integrated Noise Estimation -

0. Bayesian approach

 $p(\mathbf{x}|\mathbf{y}, \mathbf{K}, \sigma) \propto p(\mathbf{y}|\mathbf{x}, \mathbf{K}, \sigma) \cdot p(\mathbf{x})$

1. High-order Markov Random Field (MRF) prior

- Fields of Experts (FoE) [6] model $p(\mathbf{x}) = \frac{1}{Z} e^{-\epsilon \|\mathbf{x}\|^2/2} \prod_{i=1}^{N} \phi(\mathbf{J}_i^T \mathbf{x}_{(c)}; \boldsymbol{\alpha}_i)$ with
- $\phi(\mathbf{J}_i^{\mathrm{T}}\mathbf{x}_{(c)}; \boldsymbol{\alpha}_i) = \sum \alpha_{iz_{ic}} \mathcal{N}(\mathbf{J}_i^{\mathrm{T}}\mathbf{x}_{(c)}; 0, \eta_{iz_{ic}}^2)$ (Gaussian scale mixture experts [8]) Discrete indicator variables $<\!\!<\!\!\!<\!\!\!<\!\!\!> \!\!\!> \!\!\!z_{ic}=\!\!1$
- Latent variable representation $p(\mathbf{x}, \mathbf{z})$ with $p(\mathbf{x})$

2. MMSE estimation

- Use MMSE instead of prevalent MAP estimate and analyze its aptitude for deblurring
- Extend sampling-based MMSE estimation from denoising [8] $({f K}={f I})$ to deblurring:

 $\hat{\mathbf{x}} = \arg\min_{\tilde{\mathbf{x}}} \int \|\tilde{\mathbf{x}} - \mathbf{x}\|^2 p(\mathbf{x}|\mathbf{y}, \mathbf{K}, \sigma) \, \mathrm{d}\mathbf{x} = E[\mathbf{x}|\mathbf{y}, \mathbf{K}, \sigma]$

• In practice use $p(\mathbf{x}, \mathbf{z} | \mathbf{y}, \mathbf{K}, \sigma) \propto p(\mathbf{y} | \mathbf{x}, \mathbf{K}, \sigma) \cdot p(\mathbf{x}, \mathbf{z})$ (z eventually marginalized out)

3. Integrating noise estimation

- In contrast to previous work, assume noise level to be *unknown in the spatial domain:* $p(\mathbf{x}, \mathbf{z}, \sigma | \mathbf{y}, \mathbf{K}) \propto p(\mathbf{y} | \mathbf{x}, \mathbf{K}, \sigma) \cdot p(\mathbf{x}, \mathbf{z}) \cdot p(\sigma | \mathbf{y}, \mathbf{K})$
- Obtain MMSE estimate by integrating (marginalizing) σ out:

$$\hat{\mathbf{x}} = \arg\min_{\tilde{\mathbf{x}}} \iint \|\tilde{\mathbf{x}} - \mathbf{x}\|^2 p(\mathbf{x}, \sigma | \mathbf{y}, \mathbf{K}) d\mathbf{x}$$

Benefit:

• Can also obtain MMSE estimate of the noise level σ (integrate x out):

$$\hat{\sigma} = \arg\min_{\tilde{\sigma}} \iint \|\tilde{\sigma} - \sigma\|^2 p(\mathbf{x}, \sigma | \mathbf{y}, \mathbf{K}) \, \mathrm{d}\mathbf{x} \, \mathrm{d}\sigma = E[\sigma | \mathbf{y}, \mathbf{K}]$$

4. Sampling-based inference

• Approximate MMSE estimate through sequence of samples from the joint posterior: $\left\{ \{\mathbf{x}^{(1)}, \mathbf{z}^{(1)}, \sigma^{(1)}\}, \dots, \{\mathbf{x}^{(T)}, \mathbf{z}^{(T)}, \sigma^{(T)}\} \right\} \sim p(\mathbf{x}, \mathbf{z}, \sigma | \mathbf{y}, \mathbf{K})$

- Obtain samples of posterior through Gibbs sampling from conditional distributions • $p(\mathbf{z}|\mathbf{x}, \mathbf{y}, \mathbf{K}, \sigma)$ decomposes into univariate discrete distributions [8]
- $p(\mathbf{x}|\mathbf{z},\mathbf{y},\mathbf{K},\sigma)$ is a multivariate Gaussian
- $p(\sigma | \mathbf{x}, \mathbf{z}, \mathbf{y}, \mathbf{K})$ is a Gamma distribution: \mathcal{G}
- MMSE estimate can be approximated by averaging samples after B burn-in iterations • Alternatively, use Rao-Blackwellized MMSE estimation [4] (more efficient) by averaging
- conditional expectations:

$$\hat{\sigma}_{\mathrm{RB}} \approx \frac{1}{T-B} \sum_{t=B+1}^{T} \sqrt{\frac{\|\mathbf{y} - \mathbf{K}\mathbf{x}^{(t-1)}\|^2}{n+2}} \quad \hat{\mathbf{x}}_{\mathrm{F}}$$

Department of Computer Science, TU Darmstadt, Germany

Natural image prior

$$= \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$$
 , useful for inference

- $\mathrm{d}\mathbf{x}\,\mathrm{d}\sigma = E[\mathbf{x}|\mathbf{y},\mathbf{K}]$
- No further assumptions necessary

$$\frac{1}{\sigma^2}; \frac{n}{2} + 1, \frac{2}{\|\mathbf{y} - \mathbf{K}\mathbf{x}\|^2} \bigg)$$

Precision of Gaussian $p(\mathbf{x}|\mathbf{z},\mathbf{y},\mathbf{K},\sigma)$ $\mathbf{\hat{x}}_{\mathrm{RB}} \approx \frac{1}{T-B} \sum_{t=0}^{T} \mathbf{\hat{Q}}_{\mathbf{z}^{(t)}}^{-1} \mathbf{K}^{\mathrm{T}} \frac{\mathbf{y}}{(\sigma^{(t)})^{2}}$

Experiments

Qualitative – Preserves textured *and* **smooth regions**

Original

5×5 FoE (MAP) [6], PSNR = 28.81dB

Quantitative – State-of-the-art results for non-blind deblurring and blind denoising, including noise estimation in both applications

Deblurring	PSNR (dB)		Estimate $\hat{\sigma}$			Donoising	PSNR (dB)		Estimate $\hat{\sigma}$	
	GT	NE	avg.	J. $\langle \epsilon \rangle$		Denoising	GT	NE	avg.	$\langle \epsilon angle$
Lucy-Richardson [5]	25.38	25.34			ttive or SS	5×5 FoE (MAP) [6]	27.44	_		
Krishnan & Fergus [1]	26.97	26.86	NA		nparable rela nance also fc	5×5 FoE (MAP) [7]	27.86		NA	
Levin et al. [2]	28.03	27.96				Pairwise MRF (MMSE) [8]	27.54	_		
5×5 FoE (MAP) [6]	28.44	28.33				3×3 FoE (MMSE) [8]	27.95			
Zoran & Weiss [9]	N	IA	2.52	8.21%	Con form	Zoran & Weiss [9]	N	NA		8.8%
Ours (pairwise MRF)	28.24	28.17	2.55	4.02%	ber	Ours (pairwise MRF)	_	27.16	22.81	10.1%
Ours (3×3 FoE)	28.66	28.61	2.64	4.28%		Ours (3×3 FoE)		27.88	24.20	5.8%
Deblurring 64 test images with noise level σ = 2.55 Denoising 68 test images with noise level σ = 25										

Sorted PSNR differences for the 64 deblurred images (σ = 2.55) between our method (3x3 FoE) and all others. Below dashed line \rightarrow ours better

– References

[4] G. Papandreou and A. Yuille. Gaussian sampling by local perturbations. In NIPS*2010 [6] S. Roth and M. J. Black. Fields of experts. IJCV, 82(2):205–229, Apr. 2009. [9] D. Zoran and Y. Weiss. Scale invariance and noise in natural images. In ICCV 2009.

TECHNISCHE UNIVERSITÄT DARMSTADT

Blurred, PSNR = 23.89dB

Levin et al. [2], PSNR = 28.54dB

Ours (3×3 FoE), PSNR = 29.05dB

Krishnan & Fergus [1], PSNR = 28.36dB

Ours (pairwise MRF), PSNR = 28.84dB

Lucv-Richardson [5]. PSNR = 27.01dE

Average image restoration quality (PSNR) and average relative noise estimation error ($\langle \epsilon \rangle$) **GT**: Using ground truth noise level **NE**: Noise level integrated out (ours) or estimated beforehand (with Zoran & Weiss [9])

Noise estimation results for the 64 deblurred images (σ = 2.55) in terms of average relative estimation error. Each curve sorted separately.

[1] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-Laplacian priors. In NIPS*2009.

[2] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth from a conventional camera with a coded aperture. ACM T. Graphics, 26(3), July 2007. [3] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind deconvolution algorithms. In CVPR 2009.

[5] W. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. America, 62(1):55–59, 1972.

[7] K. G. G. Samuel and M. F. Tappen. Learning optimized MAP estimates in continuously-valued MRF models. In CVPR 2009.

[8] U. Schmidt, Q. Gao, and S. Roth. A generative perspective on MRFs in low-level vision. In CVPR 2010.