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In this supplemental material we provide additional de-
tails that are helpful to reproduce the results in the main
paper [10].

1. Parameter Learning in Transformation-
Invariant Product Models

In this section we briefly demonstrate that parameter
learning in product models with integrated transformation
invariance (cf . Sec. 2.1 from the main paper) involves only
minor modifications to existing gradient-based learning al-
gorithms. We begin by considering a generic product model

p(x; Θ) =
1

Z(Θ)

|F|∏
i=1

φi
(
F(i)x; θi

)
(1)

as defined in Eq. (1) of the main paper. Now the task is
to learn all parameters Θ = {F(i), θi|i = 1, . . .} by using
gradients of the log-probability (density) log p(x; Θ). It is
quite straightforward to see that the partial derivatives of the
log-probability (density) w.r.t. the factor parameters θi and
the feature transformations F(i) are given as

∂ log p(x; Θ)
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)
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∂F(i)

− ∂ logZ(Θ)

∂F(i)
. (3)

The gradient of the log-partition function logZ(Θ) (second
term of Eqs. (2,3)) is usually approximated by evaluating
the first term of the respective equation on a set of samples
from the product model (cf . [6]).

According to Eq. (4) of the main paper, we define a
transformation-invariant product model w.r.t. a set of linear
image transformations T = {T(j)|j = 1, . . .} as

pT (x; Θ) =
1

Z(Θ)

|T |∏
j=1

|F|∏
i=1

φi
(
F(i)T(j)x; θi

)
. (4)

In analogy to Eq. (1) the partial derivatives of the log-
probability (density) thus follow as

∂ log pT (x; Θ)
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Please note that Eqs. (5,6) involve quite similar derivative
calculations as Eqs. (2,3). In essence, the derivatives of the
log-factors log φi need to be summed over |T | transformed
inputs. Hence, integrating transformation-invariance into
existing product model implementations generally requires
little implementation effort.

2. Details of Parameter Learning

2.1. R-FoE

The R-FoE model of Sec. 3 of the main paper was trained
on a database of 5000 natural images (50 × 50 pixels) us-
ing persistent contrastive divergence [12] (also known as
stochastic maximum likelihood). Learning was done with
stochastic gradient descent using mini-batches of 100 im-
ages (and model samples) for a total of 10000 (exponen-
tially smoothed) gradient steps with an annealed learning
rate. We trained the model using conditional sampling to
avoid boundary issues [8]. Both learned filters were ini-
tialized randomly from a standard normal distribution, and
constrained to have mean 0 and norm 1 throughout learn-
ing. We initialized the shapes of the potential functions to
be very broad (cf . [5]).

1



2.2. RC-RBM

We trained our RC-RBM from Sec. 4 of the main pa-
per akin to the algorithm of [8], in particular using con-
trastive divergence [6] with one step of Gibbs sampling,
although applying Rao-Blackwellization [11] to minimize
sample variance. We used two datasets for unsupervised
training (always using one visible unit per image pixel): a
random subset of 10000 binary images from the training set
of the MNIST handwritten digits [1], and the same dataset
of natural images as used for the R-FoE, but here ZCA-
whitened. In both cases, we performed stochastic gradient
descent with mini-batches of 20 images (100 for MNIST),
an annealed learning rate, and exponential gradient smooth-
ing. For training on natural images, we also relied on con-
ditional sampling to avoid boundary issues [8].

We initialized all hidden biases to b = −3 and all visible
biases to c = 0; note that training on MNIST relied on indi-
vidual biases c, and training on natural images used a shared
(scalar) bias c for all visible units. Instead of fixing the
hidden biases b to a small value to encourage sparsity [8],
we learned them together with the features, which we con-
strained to have the same norm, updated slowly over time
through exponential smoothing. We did not use any addi-
tional regularization terms to encourage learning of sparse
features (such as [7]).

We only define the filters wi inside a circular area by
actually using R̂(ω) = B ·R(ω) instead of R(ω) in Eq. (11)
of the main paper, where multiplication with B extracts the
circular interior of the image patch as a vector.

3. Details of Feature Extraction
We extract RC-RBM features by computing the hidden

activation probabilities pRC-RBM(h = 1|x) for each feature
i convolutionally at all image locations (k, l) and all speci-
fied rotation angles ω. Computation is straightforward since
pRC-RBM(h = 1|x) decomposes into a product of univariate
distributions

pRC-RBM(h(ω),(k,l),i = 1|x) = sig(wT
iR(ω)CS(k,l)x + bi)

(7)
with the logistic function sig(x) = 1/(1 + e−x). We
note that we set all hidden biases b = 0 for feature ex-
traction after learning, as this significantly increased per-
formance in recognition and detection tasks. Furthermore,
non-maximum suppression (over rotations ω) is used to
only retain activations with maximum probability at each
location (k, l). The EHOF/IHOF descriptor is computed
separately for each (of the four) learned features; the final
descriptor is then obtained by concatenation of the individ-
ual descriptor vectors.

Oriented gradient features are extracted the same way as
in the popular HOG [2] descriptor: Centered image deriva-
tives ([1, 0,−1] and [1, 0,−1]T) are first computed at all im-

age locations to obtain horizontal and vertical derivative im-
ages. Each pixel is then assigned to one of B orientation
angles (using linear interpolation) according to its gradient
angle and represented by its gradient magnitude.

4. Additional Descriptor Details
The aim of this section is to provide further descriptor

details that were omitted from the main paper due to lack of
space. All details can also be inferred from the MATLAB
code, which is available on the authors’ webpages.

4.1. Local cell normalization

When using oriented gradient features, we also perform
two different normalizations of all cells (except the central
one), akin to the block normalization procedure in HOG.
We do this because it significantly increases performance.

Here, each block consists of two neighboring cells on
a ring, i.e. each cell is normalized with its predecessor
and successor cell. We use L2-normalization g(v, z) =
v/
√
‖z‖2 + ε for cell histogram vector v with block vec-

tor z and ε = 10−4; we do not “clip” values after normal-
ization. The layout in the descriptor matrix is adjusted in
order to retain the equivariance property: Different normal-
izations of the same cell are (deterministically) grouped to-
gether in the columns of the matrix, i.e. first come all (both)
normalizations of the normalized entry for orientation angle
1, then all normalizations for angle 2, etc.

Unfortunately, this local cell normalization procedure
does not improve results when applied to our learned RC-
RBM features, hence we do not use it; however, we can
assume that a suitable normalization scheme would also en-
hance the performance for our learned features, but we have
not explored this yet. In this sense, gradient features are at
an advantage due to previous research on suitable normal-
izations, which we leverage here.

4.2. Descriptor dimensionality and scaling

For an EHOF descriptor with R rings, C cells per ring,
and features extracted at O orientations, we obtain a 3-
dimensional histogram H3 ∈ RR×C×O, which is reshaped
into the 2-dimensional H2 ∈ RR·C×n·O. For gradient fea-
tures, n = 2 due to the two normalizations of each cell,
and n = 1 for our learned RC-RBM features. Hence, we
obtain the descriptor dimensionality D = R·C·n·O + O,
where the last term comes from the histogram vector of cen-
tral cell c ∈ RO. For IHOF, we additionally compute the
2D-DFT of H2 and the 1D-DFT of c and only retain the
magnitude in both cases. The DFT magnitude of real inputs
exhibits redundancies, which we have only removed in case
of 1D-DFT, resulting in the IHOF descriptor dimensionality
D = R·C·n·O + dO2 e.

The resulting descriptor vectors are scaled to unit infinity
norm in case of IHOF (and EHOF for car detection).
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5. Experimental Details

5.1. Denoising

For the results in Tab. (1) of the main paper, we used a
fixed sampling scheme similar to [9] with four independent
samplers, each running for 60 iterations to yield 120 sam-
ples overall after discarding 30 burn-in iterations each. We
employed the same procedure for the denoising example in
Fig. (5) of the paper, but used 240 samples in total to further
reduce to variability induced by the sampling process.

5.2. Car detection

RC-RBM features were extracted from whitened
grayscale versions of the RGB color input images, whereas
gradient features were obtained by taking the maximum
gradient response (in terms of magnitude) over the three
channels of the color images. For the HOG baseline perfor-
mance, we use the implementation of [3] with 5 × 5 pixel-
sized cells and 9 (unsigned) orientation angles.

We trained the linear SVM initially by performing cross-
validation to find the best regularization parameter C, then
used two rounds of bootstrapping to obtain the final model.
Detection was carried out with a search stride of 5 pixels
over five image scales [1.0−1, 1.1−1, 1.2−1, 1.3−1, 1.4−1],
where 1.0 refers to the original image size. We evaluated
the performance according to the PASCAL VOC 2010 cri-
teria [4], i.e. requiring 50% overlap with a ground-truth an-
notation and not allowing multiple detections of the same
car. Calculation of the average precision also followed [4].
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