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Abstract. Automatic detection and segmentation of cells and nuclei in
microscopy images is important for many biological applications. Recent
successful learning-based approaches include per-pixel cell segmentation
with subsequent pixel grouping, or localization of bounding boxes with
subsequent shape refinement. In situations of crowded cells, these can
be prone to segmentation errors, such as falsely merging bordering cells
or suppressing valid cell instances due to the poor approximation with
bounding boxes. To overcome these issues, we propose to localize cell
nuclei via star-convex polygons, which are a much better shape repre-
sentation as compared to bounding boxes and thus do not need shape
refinement. To that end, we train a convolutional neural network that
predicts for every pixel a polygon for the cell instance at that position.
We demonstrate the merits of our approach on two synthetic datasets
and one challenging dataset of diverse fluorescence microscopy images.

1 Introduction

Many biological tasks rely on the accurate detection and segmentation of cells
and nuclei from microscopy images [11]. Examples include high-content screens
of variations in cell phenotypes [2], or the identification of developmental lin-
eages of dividing cells [1,17]. In many cases, the goal is to obtain an instance
segmentation, which is the assignment of a cell instance identity to every pixel
of the image. To that end, a prevalent bottom-up approach is to first classify
every pixel into semantic classes (such as cell or background) and then group
pixels of the same class into individual instances. The first step is typically done
with learned classifiers, such as random forests [16] or neural networks [15,4,5].
Pixel grouping can for example be done by finding connected components [4].
While this approach often gives good results, it is problematic for images of very
crowded cell nuclei, since only a few mis-classified pixels can cause bordering but
distinct cell instances to be fused [3,19].

An alternative top-down approach is to first localize individual cell instances
with a rough shape representation and then refine the shape in an additional
step. To that end, state-of-the-art object detection methods [9,12,14] predomi-
nately predict axis-aligned bounding boxes, which can be refined to obtain an
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Fig. 1: (a) Potential segmentation errors for images with crowded nuclei: Merging of
touching cells (upper right) or suppression of valid cell instances due to large overlap of
bounding box localization (lower right). (b) The proposed StarDist method predicts
object probabilities di,j and star-convex polygons parameterized by the radial distances
rki,j . (c) We densely predict rki,j and di,j using a simple U-Net architecture [15] and
then select the final instances via non-maximum suppression (NMS).

instance segmentation by classifying the pixels within each box (e.g ., Mask R-
CNN [6]). Most of these methods have in common that they avoid detecting the
same object multiple times by performing a non-maximum suppression (NMS)
step where boxes with lower confidence are suppressed by boxes with higher con-
fidence if they substantially overlap. NMS can be problematic if the objects of
interest are poorly represented by their axis-aligned bounding boxes, which can
be the case for cell nuclei (Fig. 1a). While this can be mitigated by using rotated
bounding boxes [10], it is still necessary to refine the box shape to accurately
describe objects such as cell nuclei.

To alleviate the aforementioned problems, we propose StarDist, a cell de-
tection method that predicts a shape representation which is flexible enough
such that – without refinement – the accuracy of the localization can compete
with that of instance segmentation methods. To that end, we use star-convex
polygons that we find well-suited to approximate the typically roundish shapes
of cell nuclei in microscopy images. While Jetley et al. [7] already investigated
star-convex polygons for object detection in natural images, they found them to
be inferior to more suitable shape representations for typical object classes in
natural images, like people or bicycles.

In our experimental evaluation, we first show that methods based on axis-
aligned bounding boxes (we choose Mask R-CNN as a popular example) cannot
cope with certain shapes. Secondly, we demonstrate that our method performs
well on images with very crowded nuclei and does not suffer from merging bor-
dering cell instances. Finally, we show that our method exceeds the performance
of strong competing methods on a challenging dataset of fluorescence microscopy
images. StarDist uses a light-weight neural network based on U-Net [15] and is
easy to train and use, yet is competitive with state-of-art methods.



2 Method

Our approach is similar to object detection methods [12,9,7] that directly predict
shapes for each object of interest. Unlike most of them, we do not use axis-aligned
bounding boxes as the shape representation ([7,10] being notable exceptions).
Instead, our model predicts a star-convex polygon for every pixel3. Specifically,
for each pixel with index i, j we regress the distances {rki,j}nk=1 to the boundary of
the object to which the pixel belongs, along a set of n predefined radial directions
with equidistant angles (Fig. 1b). Obviously, this is only well-defined for (non-
background) pixels that are contained within an object. Hence, our model also
separately predicts for every pixel whether it is part of an object, so that we only
consider polygon proposals from pixels with sufficiently high object probability
di,j . Given such polygon candidates with their associated object probabilities, we
perform non-maximum suppression (NMS) to arrive at the final set of polygons,
each representing an individual object instance.

Object probabilities. While we could simply classify each pixel as either object or
background based on binary masks, we instead define its object probability di,j
as the (normalized) Euclidean distance to the nearest background pixel (Fig. 1b).
By doing this, NMS will favor polygons associated to pixels near the cell center
(cf. Fig. 5b), which typically represent objects more accurately.

Star-convex polygon distances. For every pixel belonging to an object, the Eu-
clidean distances rki,j to the object boundary can be computed by simply fol-
lowing each radial direction k until a pixel with a different object identity is
encountered. We use a simple GPU implementation that is fast enough that we
can compute the required distances on demand during model training.

2.1 Implementation

Although our general approach is not tied to a particular regression or classifi-
cation approach, we choose the popular U-Net [15] network as the basis of our
model. After the final U-Net feature layer, we cautiously add an additional 3×3
convolutional layer with 128 channels (and relu activations) to avoid that the
subsequent two output layers have to “fight over features”. Specifically, we use a
single-channel convolutional layer with sigmoid activation for the object proba-
bility output. The polygon distance output layer has as many channels as there
are radial directions n and does not use an additional activation function.

Training. We minimize a standard binary cross-entropy loss for the predicted
object probabilities. For the polygon distances, we use a mean absolute error
loss weighted by the ground truth object probabilities, i.e. the pixel-wise er-
rors are multiplied by the object probabilities before averaging. Consequently,
background pixels will not contribute to the loss, since their object probability
is zero. Furthermore, predictions for pixels closer to the center of each object

3 Although we only consider the single object class cell nuclei in our experiments, note
that we are not limited to that and thus use the generic term object in the following.



Input UNet (2 class)    AP = 1.000 UNet (3 class)    AP = 1.000 Mask RCNN    AP = 0.911 StarDist (Ours)    AP = 1.000

Fig. 2: Segmentation result (τ = 0.5) for Toy image. Predicted cell instances are de-
picted in green if correctly matched (TP), otherwise highlighted in red (FP). Ground
truth cells are always shown by their blue outlines in the input image (left), and in all
other images only when they are not matched by any predicted cell instance (FN ).

are weighted more, which is appropriate since these will be favored during non-
maximum suppression. The code is publicly available4.

Non-maximum suppression. We perform common, greedy non-maximum sup-
pression (NMS, cf. [14,9,12]) to only retain those polygons in a certain region
with the highest object probabilities. We only consider polygons associated with
pixels above an object probability threshold as candidates, and compute their
intersections with a standard polygon clipping method.

3 Experiments

3.1 Datasets

We use three datasets that pose different challenges for cell detection:

Dataset Toy: Synthetically created images that contain pairs of touching half-
ellipses with blur and background noise (cf. Fig. 2). Each pair is oriented in
such a way that the overlap of both enclosing bounding boxes is either very
small (along an axis-aligned direction) or very large (when the ellipses touch
at an oblique angle). This dataset contains 1000 images of size 256 × 256 with
associated ground truth labels. We specifically created this dataset to highlight
the limitations of methods that predict axis-aligned bounding boxes.

Dataset TRAgen: Synthetically generated images of an evolving cell popula-
tion from [18] (cf. Fig. 3). The generative model includes cell divisions, shape
deformations, camera noise and microscope blur and is able to simulate realis-
tic images of extremely crowded cell configurations. This dataset contains 200
images of size 792× 792 along with their ground truth labels.

Dataset DSB2018: Manually annotated real microscopy images of cell nuclei
from the 2018 Data Science Bowl5. From the original dataset (670 images from
diverse modalities) we selected a subset of fluorescence microscopy images and
removed images with labeling errors, yielding a total of 497 images (cf. Fig. 4).

For each dataset, we use 90% of the images for training and 10% for testing.
We train all methods (Section 3.3) with the same random crops of size 256×256
from the training images (augmented via axis-aligned rotations and flips).

4 https://github.com/mpicbg-csbd/stardist
5 https://www.kaggle.com/c/data-science-bowl-2018

https://github.com/mpicbg-csbd/stardist
https://www.kaggle.com/c/data-science-bowl-2018


Input UNet (2 class)    AP = 0.552 UNet (3 class)    AP = 0.909 Mask RCNN    AP = 0.945 StarDist (Ours)    AP = 0.964

Fig. 3: Segmentation result (τ = 0.5) for TRAgen image. See Fig. 2 caption for legend.

3.2 Evaluation Metric

We adopt a typical metric for object detection: A detected object Ipred is con-
sidered a match (true positive TPτ ) if a ground truth object Igt exists whose in-

tersection over union IoU =
Ipred∩Igt
Ipred∪Igt

is greater than a given threshold τ ∈ [0, 1].

Unmatched predicted objects are counted as false positives (FPτ ), unmatched
ground truth objects as false negatives (FN τ ). We use the average precision
APτ = TPτ

TPτ+FN τ+FPτ
evaluated across all images as the final score.

3.3 Compared Methods

U-Net (2 class): We use the popular U-Net architecture [15] as a baseline to
predict 2 output classes (cell, background). We use 3 down/up-sampling blocks,
each consisting of 2 convolutional layers with 32 · 2k(k = 0, 1, 2) filters of size
3 × 3 (approx. 1.4 million parameters in total). We apply a threshold σ on the
cell probability map and retain the connected components as final result (σ is
optimized on the validation set for every dataset).

U-Net (3 class): Like U-Net (2 class), but we additionally predict the boundary
pixels of cells as an extra class. The purpose of this is to differentiate crowded
cells with touching borders (similar to [4,5]). We again use the connected com-
ponents of the thresholded cell class as final result.

Mask R-CNN: A state-of-the-art instance segmentation method combining a
bounding-box based region proposal network, non-maximum-suppression (NMS),
and a final mask segmentation (approx. 45 million parameters in total). We use
a popular open-source implementation6. For each dataset, we perform a grid-
search over common hyper-parameters, such as detection NMS threshold, region
proposal NMS threshold, and number of anchors.

StarDist: Our proposed method as described in Section 2. We always use n = 32
radial directions (cf. Fig. 1b) and employ the same U-Net backbone as for the
first two baselines described above.

3.4 Results

We first test our approach on dataset Toy, which was intentionally designed to
contain objects with many overlapping bounding boxes. The results in Table 1

6 https://github.com/matterport/Mask_RCNN

https://github.com/matterport/Mask_RCNN


Input UNet (2 class)    AP = 0.593 UNet (3 class)    AP = 0.788 Mask RCNN    AP = 0.824 StarDist (Ours)    AP = 0.846

Input UNet (2 class)    AP = 0.241 UNet (3 class)    AP = 0.362 Mask RCNN    AP = 0.542 StarDist (Ours)    AP = 0.745

Fig. 4: Two segmentation results (τ = 0.5) for DSB2018. See Fig. 2 caption for legend.

and Fig. 2 show that for moderate IoU thresholds (τ < 0.7), StarDist and
both U-Net baselines yield essentially perfect results. Mask R-CNN performs
substantially worse due to the presence of many slanted and touching pairs of
objects (which have almost identical bounding boxes, hence one is suppressed).
This experiment highlights a fundamental limitation of object detection methods
that predict axis-aligned bounding boxes.

On dataset TRAgen, U-Net (2 class) shows the lowest accuracy mainly due
to the abundance of touching cells which are erroneously fused. Table 1 shows
that all other methods attain almost perfect accuracy for many IoU thresholds
even on very crowded images, which might be due to the stereotypical size and
texture of the simulated cells. We show the most difficult test image in Fig. 3.

Finally, we turn to the real dataset DSB2018 where we find StarDist to out-
perform all other methods for IoU thresholds τ < 0.75, followed by the next best
method Mask R-CNN (cf. Table 1 and Fig. 5a). Fig. 4 shows the results and er-
rors for two different types of cells. Common segmentation errors include merged
cells (mostly for the 2 class U-Net), bounding box artifacts (Mask R-CNN) and
missing cells (all methods). The bottom example of Fig. 4 is particularly challeng-
ing, where out-of-focus signal results in densely packed and partially overlapping

a b

Fig. 5: (a) Detection scores on dataset DSB2018 (cf. Table 1, bottom). (b) Example
of StarDist polygon predictions for 200 random pixels (left) and for all pixels after
non-maximum suppression (right); pixels and associated polygons are color-matched.



Threshold τ 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Toy
U-Net (2 class) 0.9994 0.9990 0.9977 0.9931 0.9641 0.8659 0.6229 0.2939 0.0667
U-Net (3 class) 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9990 0.9874 0.9243
Mask R-CNN 0.9104 0.9061 0.9014 0.8944 0.8729 0.8471 0.7728 0.6075 0.3717
StarDist (Ours) 0.9998 0.9998 0.9998 0.9998 0.9994 0.9890 0.8695 0.4630 0.0748

TRAgen
U-Net (2 class) 0.9030 0.8908 0.8852 0.8815 0.8811 0.8783 0.8566 0.6937 0.4056
U-Net (3 class) 0.9918 0.9904 0.9899 0.9897 0.9890 0.9883 0.9848 0.9679 0.8995
Mask R-CNN 0.9924 0.9919 0.9912 0.9898 0.9863 0.9777 0.9594 0.8948 0.5280
StarDist (Ours) 0.9984 0.9981 0.9976 0.9967 0.9953 0.9934 0.9841 0.9465 0.4259

DSB2018
U-Net (2 class) 0.6739 0.6295 0.5975 0.5650 0.5339 0.4819 0.4151 0.3248 0.2032
U-Net (3 class) 0.8060 0.7753 0.7431 0.7011 0.6543 0.5777 0.4910 0.3738 0.2258
Mask R-CNN 0.8323 0.8051 0.7728 0.7299 0.6838 0.5974 0.4893 0.3525 0.1891
StarDist (Ours) 0.8641 0.8361 0.8043 0.7545 0.6850 0.5862 0.4495 0.2865 0.1191

Table 1: Cell detection results for three datasets and four methods, showing average
precision (AP) for several intersection over union (IoU) thresholds τ .

cell shapes. Here, merging mistakes are pronounced for both U-Net baselines. All
false positives predicted by StarDist retain a reasonable shape, whereas those
predicted by Mask R-CNN sometimes exhibit obvious artifacts.

We observe that StarDist yields inferior results for the largest IoU thresholds
τ for our synthetic datasets. This is not surprising, since we predict a parametric
shape model based on only 32 radial directions, instead of a per-pixel segmenta-
tion as all other methods. However, an advantage of a parametric shape model is
that it can be used to predict reasonable complete shape hypotheses from nuclei
that are only partially visible at the image boundary (cf. Fig. 5b, also see [20]).

4 Discussion

We demonstrated that star-convex polygons are a good shape representation to
accurately localize cell nuclei even under challenging conditions. Our approach
is especially appealing for images of very crowded cells. When our StarDist

model makes a mistake, it does so gracefully by either simply omitting a cell or
by predicting at least a plausible cell shape. The same cannot by said for the
methods that we compared to, whose predicted shapes are sometimes obviously
implausible (e.g ., containing holes or ridges). While StarDist is competitive to
the state-of-the-art Mask R-CNN method, a key advantage is that it has an
order of magnitude fewer parameters and is much simpler to train and use. In
contrast to Mask R-CNN, StarDist has only few hyper-parameters that do not
need careful tuning to achieve good results.

Our approach could be particularly beneficial in the context of cell track-
ing. There, it is often desirable to have multiple diverse segmentation hypothe-
ses [13,8], which could be achieved by suppressing fewer candidate polygons.
Furthermore, StarDist can plausibly complete shapes for partially visible cells
at the image boundary, which could make it easier to track cells that enter and
leave the field of view over time.
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