Cell Detection with Star－convex Polygons

center for systems biology dresden

Uwe Schmidt＊，Martin Weigert ${ }^{\star}$ ，Coleman Broaddus \＆Gene Myers Max Planck Institute of Molecular Cell Biology and Genetics，Dresden，Germany Center for Systems Biology Dresden，Germany
\｛uschmidt｜mweigert｜broaddus｜myers\}@mpi-cbg.de

Abstract

Automatic detection and segmentation of cells and nuclei in microscopy images is important for many biological applications．Recent successful learning－based approaches include per－pixel cell segmentation with subsequent pixel grouping，or localization of bounding boxes with subsequent shape refinement．In situations of crowded cells，these can be prone to segmentation errors，such as falsely merging bordering cells or suppressing valid cell instances due to the poor approximation with bounding boxes．To overcome these issues，we propose to localize cell nuclei via star－convex polygons，which are a much better shape representation as compared to bounding boxes and thus do not need shape refinement．To that end，we train a convolutional neural network that predicts for every pixel a polygon for the cell instance at that position．We demonstrate the merits of our approach on two synthetic datasets and one challenging dataset of diverse fluorescence microscopy images．

1．Overview of Instance Segmentation

Instance segmentation of cells from microscopy images
－Automatic detection and segmentation of cells and nuclei in microscopy images is important for many
biological applications［1］．
－A common goal is to obtain an instance segmentation，which is the assignment of a cell instance identity to
every pixel of the image
－Images often contain many crowded cells with touching borders，which makes segmentation difficult
Common Approaches
－Classification of every pixel into semantic classes（e．g．background，border，cell）and subsequent grouping e．g． via connected components $[2,3]$
－Localization of proposal cell instances with bounding boxes and subsequent mask refinement（e．g．
Mask－RCNN［4］）
Sources of segmentation errors
－Merging of touching cells
－Suppression of valid cell instances due to large overlap of bounding box localization

3．Quantitative Comparisons

5．Shape Completion

－StarDist can be trained to do shape completion for partially visible objects at the image boundary．
－Example Image：StarDist polygon candidate predictions for 200 random pixels（left）and for all pixels after
non－maximum suppression （right）；pixels and associated polygons are color－matched．

2．Our Approach－StarDist

Training
Given training data with ground truth instances，we compute for each pixel $p_{i j}$
－an object probability $d_{i, j} \in[0,1]$ as the（normalized）Euclidean distance to the nearest background pixel，and －the radial distances $r_{i, j}^{k} \in \mathbb{R}^{+}$as the smallest distance from $p_{i, j}$ to the object boundary（if $p_{i, j}$ is inside an object）along $k=1 \ldots K$ equally spaced directions（we use $K=32$ ）．
We train a convolutional neural network（using a U－Net［2］as backbone）to densely predict both $d_{i, j}$ and $r_{i, j}^{k}$
Inference
（1）Predict object probabilities $d_{i, j}$ and radial distances $r_{i, j}^{k}$ from input image via trained neural network． （2 Identify polygon candidates from pixels with object probabilities above a threshold．
（3）Perform non－maximum suppression of candidates to remove extraneous polygons．

© \uparrow

4．Segmentation Examples

TP Correct predictions（true positives）．
FP Wrong predictions（false positives）．
FN Missing predictions（false negatives）are indicated by blue outlines．

Toy Example $(\tau=0.5)$

