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Abstract
Automatic detection and segmentation of cells and nuclei in microscopy images is important for many biological
applications. Recent successful learning-based approaches include per-pixel cell segmentation with subsequent
pixel grouping, or localization of bounding boxes with subsequent shape refinement. In situations of crowded
cells, these can be prone to segmentation errors, such as falsely merging bordering cells or suppressing valid
cell instances due to the poor approximation with bounding boxes. To overcome these issues, we propose to
localize cell nuclei via star-convex polygons, which are a much better shape representation as compared to
bounding boxes and thus do not need shape refinement. To that end, we train a convolutional neural network
that predicts for every pixel a polygon for the cell instance at that position. We demonstrate the merits of our
approach on two synthetic datasets and one challenging dataset of diverse fluorescence microscopy images.

1. Overview of Instance Segmentation
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Instance segmentation of cells from microscopy images
•Automatic detection and segmentation of cells and nuclei in microscopy images is important for many
biological applications [1].
•A common goal is to obtain an instance segmentation, which is the assignment of a cell instance identity to
every pixel of the image
• Images often contain many crowded cells with touching borders, which makes segmentation difficult.

Common Approaches
•Classification of every pixel into semantic classes (e.g. background, border, cell) and subsequent grouping e.g.
via connected components [2, 3]
• Localization of proposal cell instances with bounding boxes and subsequent mask refinement (e.g.
Mask-RCNN [4])

Sources of segmentation errors
•Merging of touching cells
• Suppression of valid cell instances due to large overlap of bounding box localization

3. Quantitative Comparisons
Toy Example (Synthetic) Crowded Cells (Synthetic) DSB 2018 Challenge (Real)

•Datasets: 2 synthetic and 1
real dataset that highlight
different challenges.
•Compared Methods: U-Net
with 2 and 3 classes [2, 3],
Mask-RCNN [4].
• Evaluation metric: Average
precision for several IoU
thresholds τ

APτ = TPτ

TPτ + FN τ + FPτ
.

• StarDist achieves higher AP
than all other compared
methods (for τ < 0.7)

5. Shape Completion

• StarDist can be trained to
do shape completion for
partially visible objects at the
image boundary.
• Example Image: StarDist
polygon candidate predictions
for 200 random pixels (left) and
for all pixels after
non-maximum suppression
(right); pixels and associated
polygons are color-matched.
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2. Our Approach – StarDist
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Training
Given training data with ground truth instances, we compute for each pixel pi,j
• an object probability di,j ∈ [0, 1] as the (normalized) Euclidean distance to the nearest background pixel, and
• the radial distances rki,j ∈ R+ as the smallest distance from pi,j to the object boundary (if pi,j is inside an
object) along k = 1 . . . K equally spaced directions (we use K = 32).

We train a convolutional neural network (using a U-Net [2] as backbone) to densely predict both di,j and rki,j.

Inference
1 Predict object probabilities di,j and radial distances rki,j from input image via trained neural network.
2 Identify polygon candidates from pixels with object probabilities above a threshold.
3 Perform non-maximum suppression of candidates to remove extraneous polygons.

4. Segmentation Examples
TP Correct predictions (true positives).
FP Wrong predictions (false positives).
FN Missing predictions (false negatives) are indicated by blue outlines.

DSB 2018 Challenge (τ = 0.5)
Input UNet (2 class)    AP = 0.593 UNet (3 class)    AP = 0.788 Mask RCNN    AP = 0.824 StarDist (Ours)    AP = 0.846

Input UNet (2 class)    AP = 0.241 UNet (3 class)    AP = 0.362 Mask RCNN    AP = 0.542 StarDist (Ours)    AP = 0.745

Crowded Cells (τ = 0.5)
Input UNet (2 class)    AP = 0.552 UNet (3 class)    AP = 0.909 Mask RCNN    AP = 0.945 StarDist (Ours)    AP = 0.964

Toy Example (τ = 0.5)
Input UNet (2 class)    AP = 1.000 UNet (3 class)    AP = 1.000 Mask RCNN    AP = 0.911 StarDist (Ours)    AP = 1.000
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Code available at
https://github.com/mpicbg-csbd/stardist
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