Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy

EPFL

Uwe Schmidt ${ }^{2,3, *}$
Robert Haase ${ }^{2,3}$
Ko Sugawara ${ }^{4,5}$
Gene Myers ${ }^{2,3}$
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland ${ }^{2}$ Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany ${ }^{3}$ Center for Systems Biology Dresden (CSBD), Germany ${ }^{4}$ Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon France ${ }^{5}$ Centre National de la Recherche Scientifique (CNRS), Paris, France ${ }^{\star}$ Equal contribution
\boxtimes martin.weigert@epfl.ch, uschmidt@mpi-cbg.de @martweig, @uschmidt83 center for
systems biology
dresden systems biolo
dresden

Motivation \& Contributions

- Instance segmentation of cell nuclei is important in many biomedical projects - Common approaches struggle with noisy images and dense packing of nuclei StarDist [1] alleviates these problems by using star-convex polygons to describe the typically roundish shapes of cell nuclei, but only for 2D images Contributions (extension of StarDist [1] from 2D to 3D)
-Faithful star-convex polyhedra representation of 3D cell nuclei via judicious selection of radial directions, also for typical anisotropic voxels in microscopy - Efficient intersection computation/bounds for pairs of star-convex polyhedra necessary to make non-maximum suppression practical for large 3D volumes -Superior results on two challenging datasets, especially with little training data

Instance Segmentation of Cell Nuclei
Common approaches
-Classification of every pixel into semantic classes (e.q. background, border, cell nucleus) and subsequent grouping e.g. via connected components (e.g. U-Net [2])
Localization of proposal cell nuclei instances with axis-aligned bounding boxes and

Segmentation errors: Images often contain many densely-packed cells with touching borders. Segmentation results often exhibit merging of touching cells and suppression of valid cell in stances due to large overlap of bounding box localizations.

StarDist Examples

StarDist - Object Detection with Star-convex Shapes Training
Given training data with ground truth instances, we compute for each pixel

- an object probability p as the (normalized) distance to the nearest background pixel, and - the radial distances d_{k} to the boundary of the object that the pixel belongs to.

We train a CNN (with U-Net [2] or ResNet [3] backbone) to densely predict both p and d_{k}. Choice of radial directions:

- In 2D, we select equidistant radial directions in polar coordinates - In 3D, we choose radial directions corresponding to a Fibonacci lattice [4] of approximately equally distributed points on a sphere (or ellipsoid for anisotropic data). Inference

- Dense candidate prediction: Predict object probabilities p and radial distances d_{k} from input image. Identify polygon/polyhedra object candidates from pixels with p above a threshold. - Final candidate selection: Perform typical overlap-based non-maximum suppression (NMS) of candidates (sorted by their probabilities p) to remove redundant object proposals
2D: Computing the overlap of two polygons is rather easy, and there are good implementations. 3D: Efficiently computing the overlap of two star-convex polyhedra is challenging, therefore we use a series of bounds (see below) to check for overlap. In practice, exact but expensive computation via rasterization is only rarely necessary.

Code, Documentation, Examples

https://github.com/mpicbg-csbd/stardist

Comparison \& Examples
1.0

xample results of STARDIST-3D for two chalenging 3D fluorescence microscopy datasets. Each instance of a predicted cell nucleus is assigned a random color (not all shown on the left).

References
 [3] Kaiming He et al "t al. "U-Net: Co \qquad 5] R. A. Lotufo et al. "IFT-Watershed from gray-scale marker". In: XV Brazilian Symp. on Comp. Graphics and [6] Juan C. Caicedo et al. "Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Imagee",

