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Motivation & Contributions
• Instance segmentation of cell nuclei is important in many biomedical projects
•Common approaches struggle with noisy images and dense packing of nuclei
• StarDist [1] alleviates these problems by using star-convex polygons to
describe the typically roundish shapes of cell nuclei, but only for 2D images

Contributions (extension of StarDist [1] from 2D to 3D):
•Faithful star-convex polyhedra representation of 3D cell nuclei via judicious
selection of radial directions, also for typical anisotropic voxels in microscopy

•Efficient intersection computation/bounds for pairs of star-convex polyhedra,
necessary to make non-maximum suppression practical for large 3D volumes

•Superior results on two challenging datasets, especially with little training data

Instance Segmentation of Cell Nuclei
Common approaches:
• Classification of every pixel into semantic classes (e.g. background, border, cell nucleus) and
subsequent grouping e.g. via connected components (e.g. U-Net [2])

• Localization of proposal cell nuclei instances with axis-aligned bounding boxes and
subsequent shape refinement (e.g. Mask-RCNN [3])

Instance Segmentation
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Segmentation errors: Images often contain many densely-packed cells with touching borders.
Segmentation results often exhibit merging of touching cells and suppression of valid cell in-
stances due to large overlap of bounding box localizations.

StarDist Examples
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StarDist – Object Detection with Star-convex Shapes
Training
Given training data with ground truth instances, we compute for each pixel
• an object probability p as the (normalized) distance to the nearest background pixel, and
• the radial distances dk to the boundary of the object that the pixel belongs to.
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We train a CNN (with U-Net [2] or ResNet [3] backbone) to densely predict both p and dk.
Choice of radial directions:
• In 2D, we select equidistant radial directions in polar coordinates.
• In 3D, we choose radial directions corresponding to a Fibonacci lattice [4] of
approximately equally distributed points on a sphere (or ellipsoid for anisotropic data).

Inference
Dense Candidate Prediction Final Candidate Selection 

(NMS)
Input Result

• Dense candidate prediction: Predict object probabilities p and radial distances dk from input
image. Identify polygon/polyhedra object candidates from pixels with p above a threshold.

• Final candidate selection: Perform typical overlap-based non-maximum suppression (NMS)
of candidates (sorted by their probabilities p) to remove redundant object proposals.
2D: Computing the overlap of two polygons is rather easy, and there are good implementations.
3D: Efficiently computing the overlap of two star-convex polyhedra is challenging, therefore we
use a series of bounds (see below) to check for overlap. In practice, exact but expensive
computation via rasterization is only rarely necessary.
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Code, Documentation, Examples
https://github.com/mpicbg-csbd/stardist

Comparison & Examples
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We compare our StarDist-3D approach against
• a classical method (IFT-Watershed [5])
• 3-class 3D U-Net [6] (backgr., cell interior, cell boundary)
• 3D U-Net with watershed postprocessing (U-Net+)

Below: Colors denote instances, i.e. correct predictions have the same
color as GT. False positives in red hues, false negatives not highlighted.
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Example results of StarDist-3D for two challenging 3D fluorescence microscopy datasets.
Each instance of a predicted cell nucleus is assigned a random color (not all shown on the left).
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